Answer:
The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field, direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.
Explanation:
The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field and direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.
The magnetic force is given by the charge times the vector product of velocity and magnetic field. While gravitational force is given by the square of the particle mass divided by the square its distance of separation. Also electric forces is given by the square of the charge magnitude divided by the square its distance separation.
A transfer of charge is actually a gross movement of electrons. Charged objects have a normal or "balanced" state. This state is balanced in a sense of positive charges (protons) and negative charges (electrons). When an object has an excess of deficiency of electrons, it will try to regain its balance by releasing or accepting electrons.
Answer:
mb = 3.75 kg
Explanation:
System of forces in balance
ΣFx =0
ΣFy = 0
Forces acting on the box
T₁ : Tension in string 1 ,at angle of 50° with the horizontal on the left
T₂ = 40 N : Tension in string 2, at angle of 75° with the horizontal on the right.
Wb :Weightt of the box (vertical downward)
x-y T₁ and T₂ components
T₁x= T₁cos50°
T₁y= T₁sin50°
T₂x= 30*cos75° = 7.76 N
T₂y= 30*sin75° = 28.98 N
Calculation of the Wb
ΣFx = 0
T₂x-T₁x = 0
T₂x=T₁x
7.76 = T₁cos50°
T₁ = 7.76 /cos50° = 12.07 N
ΣFy = 0
T₂y+T₁y-Wb = 0
28.98 + 12.07(cos50°) = Wb
Wb = 36.74 N
Calculation of the mb ( mass of the box)
Wb = mb* g
g: acceleration due to gravity = 9.8 m/s²
mb = Wb/g
mb = 36.74 /9.8
mb = 3.75 kg
Velocity is a speed AND a direction.
When you turn a corner, or go around a curve in the road, your
direction changes, but the reading on the dial doesn't change.
So it can't be showing velocity. It must be showing only speed.
That's probably a big part of the reason why it's called a speedometer
and not a velocimeter.