<span>When the question says the ball lands a distance of 235 meters from the release point, we can assume this means the horizontal distance is 235 meters.
Let's calculate the time for the ball to fall 235 meters to the ground.
y = (1/2)gt^2
t^2 = 2y / g
t = sqrt{ 2y / g }
t = sqrt{ (2) (235 m) / (9.81 m/s^2) }
t = 6.9217 s
We can use the time t to find the horizontal speed.
v = d / t
v = 235 m / 6.9217 s
v = 33.95 m/s
Since the horizontal speed is the speed of the plane, the speed of the plane is 33.95 m/s</span>
Answer:
0.46km
Explanation:
45963cm/100cm=459.63m/1000m=0.45963 or 0.46km
Answer : Total energy dissipated is 10 J
Explanation :
It is given that,
Time. t = 10 s
Resistance of the resistors, R = 4-ohm
Current, I = 0.5 A
Power used is given by :

Where
E is the energy dissipated.
So, E = P t.............(1)
Since, 
So equation (1) becomes :



So, the correct option is (3)
Hence, this is the required solution.
The momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
<h3> MOMENTUM:</h3>
Momentum of a substance is the product of its mass and velocity. That is;
Momentum (p) = mass (m) × velocity (v)
According to this question, an object has a mass of 5kg and velocity of 1.2m/s. The momentum is calculated thus:
Momentum = 5kg × 1.2m/s
Momentum = 6kgm/s.
Therefore, the momentum of a 5kg object that has a velocity of 1.2m/s is 6.0kgm/s.
Learn more about momentum at: brainly.com/question/250648?referrer=searchResults
Answer:
v = 7.67 m/s
Explanation:
Given data:
horizontal distance 11.98 m
Acceleration due to gravity 9.8 m/s^2
Assuming initial velocity is zero
we know that

solving for t
we have

substituing all value for time t

t = 1.56 s
we know that speed is given as


v = 7.67 m/s