Answer:
0.84 m
Explanation:
Given in the y direction:
Δy = 0.60 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
0.60 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.35 s
Given in the x direction:
v₀ = 2.4 m/s
a = 0 m/s²
t = 0.35 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (2.4 m/s) (0.35 s) + ½ (0 m/s²) (0.35 s)²
Δx = 0.84 m
This can be solved using momentum balance, since momentum is conserved, the momentum at point 1 is equal to the momentum of point 2. momentum = mass x velocity
m1v1 = m2v2
(0.03kg x 900 m/s ) = 320(v2)
v2 = 27 / 320
v2 = 0.084 m/s is the speed of the astronaut
<span>The intensity of an earthquake is dependent on one's proximity to the focus of the quake, also called the "epicenter" and is based on observations of the shaking of the ground on humans, structures, and the natural landscape.</span>
Explanation:
A worker picks up the bag of gravel. We need to find the speed of the bucket after it has descended 2.30 m from rest. It is case of conservation of energy. So,

h = 2.3 m

So, the speed of the bucket after it has descended 2.30 m from rest is 6.71 m/s.