The final answer is -322, 320 Joules. The solution for the problem is:
The equation that must be used in this problem is:
U = mCp(Tf-Ti)
where:
U = energy released or absorbed in Joules
m = mass in kg
Cp = specific heat of material in J/kg-C
Tf = final temperature, C
Ti = initial temperature, C
Looking up the Cp of granite gives a value of 790 J/kg-C.
U = 17kg (790 J/kg-C) (21-45)
U = - 322, 320 Joules (negative means heat is released)
19.6 × ( 1 mol KOH / 56 grams KOH )
= 0.35 mol KOH
_________________________________
0.35 mol KOH ×( 2 mol H2O / 2 mol KOH )
= 0.35 mol H20
_________________________________
0.35 mol H2O × ( 18 g H2O / 1 mol H2O )
= 6.3 grams H2O
The combined gas law equation has been
.
The combined gas law has been assigned to the ideal gas. It has been stating that ideal gas are having negligible inter-molecular attraction and collision resulting in the absence of pressure and volume from the particles.
In an ideal gas the equation has been given as:

Where, <em>P </em>has been the pressure of the gas
<em>V </em>has been the volume of the gas
<em>n </em>has been the moles of the gas
<em>R </em>has been a constant
<em>T </em>has been the temperature of the gas
The combined gas law has been given as the change in the pressure, and volume for a gas. It has been given as:

For more information about combined gas law, refer to the link:
brainly.com/question/13154969
An object's weight would affect the amount of friction it causes. (true)
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 4.972 atm
V= 9.583 L
n=?
R= 
T=31.8 +273= 304.8 K
Putting value in the given equation:
=n
n= 
Moles = 1.905 moles
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1