Answer:
The sum of an object's potential and kinetic energies is called the object's mechanical energy. As an object falls its potential energy decreases, while its kinetic energy increases. The decrease in potential energy is exactly equal to the increase in kinetic energy
Thank you and please rate me as brainliest as it will help me to level up
Answer:
0.137 M NH3
Explanation:
First divide the mass of NH3 by the molar mass of NH3, and then divide by the volume to get molarity.
0.583 g / 17.031 g/mol = 0.0342 mol NH3
0.0342 mol NH3 / 0.250 L = 0.137 M NH3
Answer:
A calculator has an endifiite shape because all of its atoms are touching each other
Recall that density is Mass/Volume. We are given the mL of liquid which is volume so all we need is mass now. We are given the mass of the granulated cylinder both with and without the liquid, so if we subtract them, we can get the mass of the liquid by itself. So, 136.08-105.56= 30.52g. This is the mass of the liquid. We now have all we need to find the density. So, let’s plug these into the density formula. 30.52g/45.4mL= 0.672 g/mL. This is our final answer since the problem requests the answer in g/mL, but be careful, because some problems in the future may ask for g/L requiring unit conversions. Also note that 30.52 was 4 sigfigs and 45.4 was 3 sigfigs, and so dividing them required an answer that was 3 sigfigs as well, hence why the answer is in the thousandths place
The reaction equation is:
<span>2CuO(s) + C(s) </span>→ <span>2Cu(s) + CO</span>₂<span>(g)
First, we determine the number of grams present in one ton of copper oxide. This is:
1 ton = 9.09 x 10</span>⁵ g
We convert this into moles by dividing by the molecular mass of copper oxide, which is:
9.09 x 10⁵ / 79.5 = 11,434 moles
Each mole of carbon reduces two moles of copper oxide, so the moles of carbon required are:
11,434 / 2 = 5,717 moles of Carbon required
The mass of carbon is then:
5,717 x 12 = 68,604 grams
The mass of coke is:
68,604 / 0.95 = 72,214 g
The mass of coke required is 7.22 x 10⁴ grams