Answer:
C2H6
Explanation:
Let us first consider the molar Masses of each gas
HBr - 80.91 g/mol
NO2 - 46.0055 g/mol
C2H6 - 30.07 g/mol
We must remember that the greater the molar mass of a gas the lesser its velocity and average kinetic energy.
Looking at the gases listed, C2H6 have the highest average kinetic energy at this temperature since it has the lowest molecular mass. This reasoning is directly derived from Graham's law of diffusion in gases.
Hence C2H6 will effuse fastest when a hole is made in the container. It also possess the greatest average kinetic energy because it has the lowest molecular mass.
Answer:
2.122×10^25atoms
Explanation:
number of moles=mass/molar mass
7.05moles= mass of pyridine/79
reacting mass of pyridine=556.95
C5H5N= (12×5)+(5)+(14)=79
C5=60
to find the mass of carbon in 556.95g of pyridine we take the stoichometric ratio
60[C5] -----> 79[C5H5N]
x[C5] --------> 556.95g[C5H5N]
cross multiply
x=(60×556.95)/79
x=423g of carbon
moles=mass/molar mass
moles of carbon=423/12
moles=35.25moles of carbon
moles=number of particles/Avogadro's constant
35.25=number of particles/6.02×10^23
number of particles=2.122×10^25atoms of carbon
They all don’t, they also can have positive charges like LiOH (Lithium Hydroxide)
Answer:
- Alanine = 5.61 mmoles
- Leucine = 3.81 mmoles
- Tryptophan = 2.45 mmoles
- Cysteine = 4.13 mmoles
- Glutamic acid = 3.40 mmoles
Explanation:
Mass / Molar mass = Moles
Milimoles = Mol . 1000
500 mg / 1000 = 0.5 g
- Alanine = 0.5 g / 89 g/m → 5.61x10⁻³ moles . 1000 = 5.61mmoles
- Leucine = 0.5 g / 131 g/m → 3.81 x10⁻³ moles . 1000 = 3.81 mmoles
- Tryptophan = 0.5 g / 204 g/m → 2.45x10⁻³ moles . 1000 = 2.45 mmoles
- Cysteine = 0.5 g / 121 g/m → 4.13x10⁻³ moles . 1000 = 4.13 mmoles
- Glutamic acid = 0.5 g 147 g/m → 3.40x10⁻³ moles . 1000 = 3.4 mmoles