Answer:
Explanation:
This is going to sound like an absurd answer, but sometimes physics can be a little strange.
This answer is weird because of the definition of displacement. It means the distance from the starting point to the ending point, disregarding what happened in between. The point is that the astronaut is at the starting point of his orbit. By definition the starting and ending points are the same. His displacement is 0.
So the answer is you have the greater displacement when you walked one way to school. The starting point and the ending point are different. You have gone further.
However just to make things a little nasty, when you walk home again, your displacement will be the same as the astronaut's -- 0 meters because you will be right back where you started from.
<h2>
82.353 km/hr</h2>
Explanation:
The driver travels 135 km towards East in 1.5 hr. He stops for 45 min. He again travels 215 km towards East in 2.0 hr.
The total displacement of the driver in the given time is ths sum of individual displacements, because all the displacements are in the same directon.
Total displacement = 
Total time travelled = 

∴ Driver's average velocity = 
It’s b because if you’re running at 5 miles per second being a 100kg weight is the fastest
D all of the above applies to the functions of the nervous system.
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC