1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksana_A [137]
3 years ago
5

What is an inexpensive, portable, and common way to assess body fat in the fitness industry?

Physics
1 answer:
Musya8 [376]3 years ago
5 0

Answer: Skinfold testing

Explanation:

Skinfold testing, is also referred to as calliper testing and it's used to know the body fat percentage. Skinfold testing is an inexpensive, portable, and common way to assess body fat in the fitness industry.

It is typically done with the use of caliper tapes, marker pens which makes it cheap. Skinfold testing isn't usually accurate which is as a result of human errors.

You might be interested in
Looking for some help with the left side of the table and the questions followed :)
Inessa [10]

Answer:

(1). Going in the order: Gas, Liquid, Solid.

    Particle separation: Very large; large; small.

    Strength of forces between particles: very weak; weak; strong.

(2). a. The change of state is condensation.

     b. The density of the substance is increasing as particles move closer together.  

(3). a. The liquid's temperature decreases until it reaches solidification (freezing) point, and then the temperature will remain constant until all of the liquid has solidified.

     b. The particles move with less and less energy until they have low enough energy to come together and solidify, then they will release more energy when they come together to form bonds, and vibrate about their equilibrium positions once they are part of a  molecular bond.

Additional explanation:

(1). The particle separation in a gas is very large because the gas has a very low density, and since particles are not that close together,<em> the strength of forces between particles is very weak</em>.

The liquid is somewhat more denser than the gas and therefore the particle separation is large but less than that in a gas,<em> The strength of forces between particles is still weak but greater  than in a gas. </em>

Finally, particle separation in a solid is small because the solid is still more denser than the liquid, and the strength of forces between particles is strong because it's these forces that give a solid its rigid shape.

(2). a.The change of state of a substance in which particles slow down and move close together is called condensation.

    b. As the particles move close together, they are occupying less and less volume; therefore, the density is increasing.

(3). The explanation is already given in the answer.

6 0
3 years ago
consider the free-body diagram. if you want the box to move, the force applied while dragging must be greater than the
NeTakaya

Answer:

Force of static friction between the two surfaces

Explanation:

When two surfaces come into contact, they exert a force that resist the sliding of the two surfaces. This force is called static friction.

This force is given by the relation

                                       F_{s}=\mu_{s}\eta

Where,

                             μ - coefficient of static friction

                             η - normal force acting on the body

When a force acts on a body placed on a rough surface, it doesn't do any work if the applied force was less than the force of static friction.

So, in order to move the body, the applied force should be greater than the force of static friction.

6 0
3 years ago
A ring with an 18mm diameter falls off a scientist's finger into the solenoid in the lab. The solenoid is 25 cm long, 5.0 cm in
Troyanec [42]

Answer:

The value is  \epsilon =  3.84 *10^{-5} \  V

Explanation:

From the question we are told that

  The diameter of the ring is  d =  18 \ mm  =  0.018 \  m

   The length of the solenoid is l = 25 \ cm  =  0.25 \ m

   The diameter of the solenoid is  D = 5.0 \ cm  = 0.05 \ m

    The number of turns is  N = 1500

   The change in  current in the solenoid is   \Delta  I   = 20 \ A

   The time taken is  \Delta  t  = 1 \ s

Generally the radius of the ring is  

     r = \frac{d}{2}

=>  r = \frac{0.018 }{2}

=>  r = 0.009 \ m

Generally the area of the ring is mathematically represented as  

      A = \pi r^2

=>   A = 3.142 *  0.009^2    

=>   A = 2.545 *10^{-4}\ m^2

Generally the induced emf is mathematically represented as

       \epsilon  =  A * \frac{dB}{dt}

Here    

         \frac{dB }{dt} =  \mu_o * \frac{N}{l} *\frac{ \Delta I }{\Delta t}

Here  \mu_o is the permeability of free space with value  

         \mu_o =  4\pi *10^{-7} \ N/A^2

So  

     \frac{dB }{dt} =   4\pi * 10^{-7} * \frac{1500}{0.25} *\frac{20 }{1}

=>  \frac{dB }{dt} =   0.150816\  T/s

So

     \epsilon =   0.150816 *  2.545 *10^{-4}

=>   \epsilon =  3.84 *10^{-5} \  V

3 0
3 years ago
3. According to Hund's rule, what's the expected magnetic behavior of vanadium (V)?
ivanzaharov [21]

Answer:

Diamagnetic

Explanation:

Hunds rule states that electrons occupy each orbital singly first before pairing takes place in degenerate orbitals. This implies that the most stable arrangement of electrons in an orbital is one in which there is the greatest number of parallel spins(unpaired electrons).

For vanadium V ion, there are 18 electrons which will be arranged as follows;

1s2 2s2 2p6 3s2 3p6.

All the electrons present are spin paired hence the ion is expected to be diamagnetic.

6 0
3 years ago
Two marbles, one twice as heavy as the other, are dropped to the ground from the roof of a building. Just before hitting the gro
Andreyy89

Answer:

 B. twice as much kinetic energy

Explanation:

Lets take the mass of the first marble =2 m

the mass of the second marble = m

We know that velocity of particle does not depends on their mass that is the velocity of both mass will be same after dropping from the roof.

We know that kinetic energy of a mass is given as

KE=\dfrac{1}{2}Mv^2

Kinetic energy for heavier mass

KE=\dfrac{1}{2}\times 2m\times V^2

Kinetic energy for light mass

KE'=\dfrac{1}{2}\times m\times V^2

KE=2 KE '

Form above two equation we can say that ,the kinetic energy for the heavier mass is twice the lighter mass.

Therefore the answer will be B.

7 0
3 years ago
Other questions:
  • a defensive tackle picks up the 0.5kg football to a height of 0.8m in 0.25s .... 1.calculate the work done 2.calculate the power
    7·1 answer
  • What is the main difference between the gas water vapor and the liquid water?
    9·2 answers
  • 6) K2O Use IUPAC nomenclature rules to properly identify this compound. A) potassium oxide B) dipotassium oxide C) potassium (I)
    10·1 answer
  • What is the climate of northern Alaska?
    6·2 answers
  • How long would it take for 1.50 mol of water at 100.0 ∘c to be converted completely into steam if heat were added at a constant
    11·2 answers
  • When you set a pot of tap water on the stove to boil, you'll often see bubbles start to form well before boiling temperature is
    14·1 answer
  • Choose the type of literary device being used in the example below. I ran as fast as a cheetah but I still missed the bus, which
    6·1 answer
  • Which elements will have chemical properties similar to NE (neon)?
    15·1 answer
  • The rotational kinetic energy term is often called the kinetic energy in the center of mass, while the translational kinetic ene
    5·2 answers
  • A runner starts at the start line runs around a 400 m track two times ending up back at the store now what is the runners distan
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!