6 sides on a dice 1-6 numbers probability is 4/6 or 2/3
So the probability is the number of favorable outcomes divided by the number of total outcomes. This means that the favorable outcomes are 7/9, and the unfavorable outcomes are 2/9. The odds against the event are the unfavorable outcomes. Therefore the odds against the event is 2/9, or 0.2 repeating. Hope this helps. Feel free to ask more questions, and feel free to ask questions about my explanation.
Answer:
see the attachment
Step-by-step explanation:
We assume that the question is interested in the probability that a randomly chosen class is a Friday class with a lab experiment (2/15). That is somewhat different from the probability that a lab experiment is conducted on a Friday (2/3).
Based on our assumption, we want to create a simulation that includes a 1/5 chance of the day being a Friday, along with a 2/3 chance that the class has a lab experiment on whatever day it is.
That simulation can consist of choosing 1 of 5 differently-colored marbles, and rolling a 6-sided die with 2/3 of the numbers being designated as representing a lab-experiment day. (The marble must be replaced and the marbles stirred for the next trial.) For our purpose, we can designate the yellow marble as "Friday", and numbers greater than 2 as "lab-experiment".
The simulation of 70 different choices of a random class is shown in the attachment.
_____
<em>Comment on the question</em>
IMO, the use of <em>70 trials</em> is coincidentally the same number as the first <em>70 days</em> of school. The calendar is deterministic, so there will be exactly 14 Fridays in that period. If, in 70 draws, you get 16 yellow marbles, you cannot say, "the probability of a Friday is 16/70." You need to be very careful to properly state the question you're trying to answer.
(1) [6pts] Let R be the relation {(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)} defined on the set {0, 1, 2, 3}. Find the foll
goldenfox [79]
Answer:
Following are the solution to the given points:
Step-by-step explanation:
In point 1:
The Reflexive closure:
Relationship R reflexive closure becomes achieved with both the addition(a,a) to R Therefore, (a,a) is 
Thus, the reflexive closure: 
In point 2:
The Symmetric closure:
R relation symmetrically closes by adding(b,a) to R for each (a,b) of R Therefore, here (b,a) is:

Thus, the Symmetrical closure:
