The elements in each pair have in common it that they are metaloids
Answer:
Final concentrations:
Cu²⁺ = 0
Al³⁺ = 3.13 mmol/L = 84.51 mg/L
Cu = 4.7 mmol/L = 300 mg/L
Al = 0.57 mmol/L = 15.49 mg/L
Explanation:
2Al (s) + 3Cu²⁺ (aq) → 2Al³⁺ (aq) + 3Cu (s)
Al: 27 g/mol ∴ 100 mg = 3.7 mmol
Cu: 63.5 g/mol ∴ 300 mg = 4.7 mmol
3 mol Cu²⁺ _______ 2 mol Al
4.7 mmol Cu²⁺ _____ x
x = 3.13 mmol Al
4.7 mmol of Cu²⁺ will be consumed.
3.13 mmol of Al will be consumed.
4.7 mmol of Cu will be produced.
3.13 mmol of Al³⁺ will be produced.
0.57 mmol of Al will remain.
Answer:
Due to the lack of context for your question I’m not completely sure which you are talking about but NH can be Imidogen or it could be ammonium which is NH4^1+
This idea has historical significance. The ancient Greek philosopher Democritus (born 460 BCE), who held that everything is composed of small particles moving in empty space, is credited with developing the first hypothesis we have about the microscopic universe. He had some concrete proof for this, such the fact that items like a new loaf of bread or a rose may give off a scent even when they are far from the source. Being a materialist, he thought that these odors originated from actual material particles released by the bread or the rose, rather than being purely a type of magic. He reasoned that these particles must float through the air, with some of them maybe landing in your nose where you can smell them immediately. This still makes sense in modern times. But many of us now have quite different perspectives on these "particles."
Thank you,
Eddie