The right answer for the question that is being asked and shown above is that: "C) carbon monoxide and carbon dioxide" hydrocarbons burn completely in an excess of oxygen, the products are <span>C) carbon monoxide and carbon dioxide</span>
Answer is: <span>Mutations sometimes improve the chances of survival for a plant.
</span>Mutations are very important because they change <span>variability in populations and in that way enable evolutionary change.
</span>There are three types of mutations:
1) good or advantageous mutations - <span> improve the chances of survival for a plant.
2) </span>bad or deleterious - decrease the chances of survival for a plant.
3) neutral - not affect he chances of survival for a plant.
Answer: Concentration of
in the equilibrium mixture is 0.31 M
Explanation:
Equilibrium concentration of
= 0.729 M
The given balanced equilibrium reaction is,

Initial conc. x 0 0
At eqm. conc. (x-2y) M (y) M (3y) M
The expression for equilibrium constant for this reaction will be:
3y = 0.729 M
y = 0.243 M
![K_c=\frac{[y]\times [3y]^3}{[x-2y]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5By%5D%5Ctimes%20%5B3y%5D%5E3%7D%7B%5Bx-2y%5D%5E2%7D)
Now put all the given values in this expression, we get :



concentration of
in the equilibrium mixture = 
Thus concentration of
in the equilibrium mixture is 0.31 M
Following the Law of Conservation of Mass, you simply add the mass of both substances. Thus, 160 grams + 40 grams = 200 grams. So, even if initially, they are in liquid and solid form, they would still have the same mass even if they change phases, owing to that they are in a closed space.
True? Not sure what the question is