The Olympic sport of curling is one that is practically designed to show Physics in motion. Curling is a sport in which two teams alternate sliding smoothed stone pucks down an ice rink court with the intent to seat their stone closest to the center of the target (called the house). Each team has eight stones, meaning that the team that goes second has the (could be) massive advantage of sending the last stone.
The mass of the stone is important in that the more massive a stone (m) and the speed at which it travels (v) dictates it's momentum (momentum=mxv). As the curling stone slides down the ice (which is relatively frictionless unless acted upon by other players or objects) and having inertia, continues in it's straight course (again, unless acted upon by outside forces). If the stone hits another stone, it transfers some of its momentum in an elastic collision to that stone and the original stone is deflected in a calculable manner.
Collisions are used in the game to either clear opponent's stones from the house or out of their defensive positions, or to make adjustments to one's stones present in the house, all based on the momentum of the moving stone, and its transference.
B. The rocks carried by the glacier would leave the marks
Answer:
Noble gases
Explanation:
The noble gases are non-metals that requires the highest amount of energy to remove an electron from their shells.
The reason for this difficult is that their electronic configuration confers a stable configuration them.
- The ionization energy is the energy required to remove the most loosely held electrons in an atom.
- Due to the special stability of noble gases, it is very difficult to remove electrons from an atom of noble gases.
"Atoms have an equal proton and neutron charge."