Explain in terms of particle behavior why smoke particles cause the detector alarm to sound
Smoke detectors are of many types but they rely on the principle of diffusion of smoke. Diffusion is the movement of particles from a region of high concentration to a region of lower concentration. Smoke particles move in what is known as Brownian motion.
Answer:
Coefficients are the numbers in front of the formulas.
This problem has two parts; the first one asking for the concentration of NaBr given both its mass and volume and the second one asking for its volume given both mass and concentration. The answers turn out to be 0.158 M and 211 mL.
<h3>Molarity</h3>
In chemistry, the use of units of concentration depends on both the substances to analyze and their amounts. In such a way, for molarity, one needs the following relationship between the moles of solute and volume of solution:

Thus, for the first part of the problem we first calculate the moles in 2.60 g of NaBr via its molar mass:

Next, we convert the 160. mL to L by dividing by 1000 in order to obtain 0.160 L to subsequently calculate the molarity:

Next, since the moles remain the same and for the second part we are asked for the volume given the concentration, one can solve for the volume so as to obtain:

That in milliliters turns out to be:

Learn more about molarity: brainly.com/question/10053901
Answer:
C. The half-life of C-14 is about 40,000 years.
Explanation:
The only false statement from the options is that the half-life of C-14 is 40,000yrs.
The half-life of an isotope is the time it takes for half of a radioactive material to decay to half of its original amount. C-14 has an half-life of 5730yrs. This implies that during every 5730yrs, C-14 will reduce to half of its initial amount.
- All living organisms contain both stable C-12 and the unstable isotope of C-14
- The lower the C-14 compared to the C-12 ratio in an organism, the older it is.
Answer:
1.52 M
Explanation:
Molarity of a solution is calculated as follows:
Molarity = number of moles (n) ÷ volume (V)
Based on the information given in this question,
Volume of soda (V) = 9.13 L
number of moles = 13.83 mol
Molarity = 13.83 ÷ 9.13
Molarity = 1.52 M