Answer:
Explanation:
In a pure metal, the electrons can be thought of as [concentrated] around atoms throughout the metal. Using molecular orbital theory, there [is ] an energy gap between the filled molecular orbitals and empty molecular orbitals. The [antibonding] orbitals are typically higher in energy and are mostly (filled]
<span>The mass of one mole of sodium bicarbonate (aka NaHCO3) is equal to 1 * 22.99g/mol + 1 * 1.00g/mol + 1 * 12.01g/mol + 3 * 16.00g/mol = 83.91g/mol. From this, we can convert 4.2g of NaHCO3 to moles by dividing by 83.91g/mol, to get 0.050 moles of sodium bicarbonate.</span>
The answer is D. Fertilizer and vinegar
Answer: 0.0 grams
Explanation:
To calculate the moles, we use the equation:

a) moles of butane

b) moles of oxygen


According to stoichiometry :
2 moles of butane require 13 moles of 
Thus 0.09 moles of butane will require =
of 
Butane is the limiting reagent as it limits the formation of product and oxygen is present in excess as (1.02-0.585)=0.435 moles will be left.
Thus all the butane will be consumed and 0.0 grams of butane will be left.