Answer:
(a) HCl
(b) HCl
(c) HCl
(d) HCl
Explanation:
<em>Given: </em>0.50 mol of CH₄ and 1.0 mol of HCl
Using stoichiometry we can calculate the answers to parts a, b, c, and d.
<h3>Part (a) </h3>
# of moles × Avogadro's number = # of atoms or molecules
Avogadro's number: 6.02 * 10²³
HCl has more atoms than CH₄.
<h3>Part (b) </h3>
This is calculated the same way as Part (a); HCl has more molecules than CH₄.
<h3>Part (c) </h3>
Molar mass of CH₄ = 16.04 g/mol
Molar mass of HCl = 36.458 g/mol
HCl has a greater mass than CH₄.
<h3>Part (d)</h3>
Assuming STP:
Molar volume of any gas at STP is 22.4 L/mol.
HCl has a greater volume than CH₄.
Answer:
The rate of energy production is referred to as power
Answer:
It needs an force in the opposite direction.
Explanation:
Example:
The box is on a flat surface. You use your hands to push it. You have to push it in the opposite direction.
Answer:
probs has to do with the size of the object
Explanation:
The time required to reduce the concentration from 0.00757 M to 0.00180 M is equal to 1.52 × 10⁻⁴ s. The half-life period of the reaction is 9.98× 10⁻⁵s.
<h3>What is the rate of reaction?</h3>
The rate of reaction is described as the speed at which reactants are converted into products. A catalyst increases the rate of the reaction without going under any change in the chemical reaction.
Given the initial concentration of the reactant, C₀= 0.00757 M
The concentration of reactant after time t is C₁= 0.00180 M
The rate constant of the reaction, k = 37.9 M⁻¹s⁻¹
For the first-order reaction: 
0.00180 = 0.00757 - (37.9) t
t = 1.52 × 10⁻⁴ s
The half-life period of the reaction: 

Half-life of the reaction = 9.98 × 10⁻⁵s
Learn more about the rate of reaction, here:
brainly.com/question/13571877
#SPJ1