Answer:
foooooooooooooooooood
Step-by-step explanation:
48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
54: 1, 2, 3, 6, 9, 18, 27, 54
gcf: 6
Hi there there's several ways this could be proven one way us to consider the allied angle theory where two angles formed between parallel lines are supplementary which in this case can be proven by
2(45)+90=180⁰ ✔
or 3(45)+45=180⁰✔
this would not be the case if it wasn't parallel
Consequently, you can also use the alternate angle theory where you essentially extend one of the lines and you'll see two equal alternate angles
Answer:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c.
Step-by-step explanation:
In order to solve this question, it is important to notice that the derivative of the expression (1 + sin(x)) is present in the numerator, which is cos(x). This means that the question can be solved using the u-substitution method.
Let u = 1 + sin(x).
This means du/dx = cos(x). This implies dx = du/cos(x).
Substitute u = 1 + sin(x) and dx = du/cos(x) in the integral.
∫((cos(x)*dx)/(√(1+sin(x)))) = ∫((cos(x)*du)/(cos(x)*√(u))) = ∫((du)/(√(u)))
= ∫(u^(-1/2) * du). Integrating:
(u^(-1/2+1))/(-1/2+1) + c = (u^(1/2))/(1/2) + c = 2u^(1/2) + c = 2√u + c.
Put u = 1 + sin(x). Therefore, 2√(1 + sin(x)) + c. Therefore:
∫((cos(x)*dx)/(√(1+sin(x)))) = 2√(1 + sin(x)) + c!!!
Answer:
---> --->
WS DS
Step-by-step explanation: