Answer:
Input work is the work done on a machine as the input force acts through the input distance. This is in contrast to output work which is a force that is applied by the body or system to something else. Output work is the work done by a machine as the output force acts through the output distance.Jan 15, 2020 bahsgsh bvshgs d hg
According to this formula:
㏑(K2/K1) = Ea/R(1/T1 - 1/T2)
when K is the rate constant
Ea is the activation energy
R is the universal gas constant
and T is the temperature K
when K is doubled so K2: K1 = 2:1 & R = 8.314 J.K^-1.mol^-1
and T1 = 10 +273 = 283 k & T2 = 21 + 273 = 294 k
So by substitution:
㏑2 =( Ea / 8.314) (1/283 - 1/294 )
∴ Ea = 43588.9 J/mol = 43.6 KJ/mol
Answer:
A reaction in which the entropy of the system decreases can be spontaneous only if it is exothermic.
Explanation:
The spontaneity of a reaction depends on the Gibbs free energy(ΔG).
- If ΔG < 0, the reaction is spontaneous.
- If ΔG > 0, the reaction is nonspontaneous.
ΔG is related to the enthalpy (ΔH) and the entropy (ΔS) through the following expression:
ΔG = ΔH - T.ΔS
where,
T is the absolute temperature (always positive)
Regarding the exchange of heat:
- If ΔH < 0, the reaction is exothermic.
- If ΔH > 0, the reaction is endothermic.
<em>Which statement is true? </em>
<em>A reaction in which the entropy of the system decreases can be spontaneous only if it is exothermic. </em>TRUE. If ΔS < 0, the term -T.ΔS > 0. ΔG can be negative only if ΔH is negative.
<em>A reaction in which the entropy of the system increases can be spontaneous only if it is endothermic.</em> FALSE. If ΔS > 0, the term -T.ΔS < 0. ΔG can be negative if ΔH is negative.
<em>A reaction in which the entropy of the system decreases can be spontaneous only if it is endothermic.</em> FALSE. If ΔS < 0, the term -T.ΔS > 0. ΔG cannot be negative if ΔH is positive.
<em>A reaction in which the entropy of the system increases can be spontaneous only if it is exothermic.</em> FALSE. If ΔS > 0, the term -T.ΔS < 0. ΔG can be negative even if ΔH is positive, as long as |T.ΔS| > |ΔH|.
To solve for moles use molar and volume:
M = mol/L
0.02700 m= mol/(.75 L)
mol = .036 mol of Hg(NO3)2
The proportion of Hg(NO3)2 to the Mercury that is used to create
HgS is 1:1 so solve for the moles of Mercury used. So:
.036 * (1 Hg(NO3)2 / 1 Hg) = .036 moles of Hg used to make
HgS
The proportion of Mercury to HgS is 1:1, as an alternative
of doing the obvious math you can conclude that .036 moles of HgS will be
produced because you're given .036 moles of Hg and an excess of S. Use the
molar mass of HgS to determine how many grams will be produced.
.036 moles * 232.66 g/mol = 8.37576 grams of Vermilion is
produced.
God made the earth, I dont know the whole story but in genesis it tells you how the earth was made.