Answer:
The correct option is (b).
Explanation:
Given that,
At the top of the hill, the kinetic energy is E and the gravitational potential energy is 3E.
We need to find the kinetic energy of the car on the ground.
We know that,
Mechanical energy = kinetic energy + potential energy
According to the law of conservation of energy, the total mechanical energy is conserved.
It means, when it coasts down to ground level, the kinetic energy is same as that on the top of the hill. Hence, the required kinetic energy on the ground is equal to 3E.
Answer:
Option B
Explanation:
Magnification of Microscope is
Mo= Magnification of objective lens and
Me= magnification of the eyepiece.
Both magnifications( of objective and eyepiece) are inversely proportional to the focal length.
Magnification,

when the focal length is less magnification will be high and when the magnification is the low focal length of the microscope will be more.
Thus. Magnification will increase by decreasing the focal length.
The correct answer is Option B
Answer:
zero
Explanation:
Work done = - 400 J
In an isothermal process, the temperature remains constant. So, according to the first law of thermodynamics
dQ = dU + dW
As the temperature remains constant and the change in internal energy is the function of change in temperature, here change is temperature is zero so the change in internal energy is also zero.
Answer:
a) 5.22 m/s
b) 31.4 %
Explanation:
f = rotating speed = 15 rpm = 15/60 =0.25 rps
m = Mass flow rate of air = 42000 kg/s
v = Tip velocity = 250 km/h = 250/3.6 = 69.44 m/s
W = Work output = 180 kW
A = Swept area of wind turbine
r = Radius of wind turbine
η = Efficiency



∴ The average velocity of the air is 5.22 m/s


∴ Conversion efficiency of the turbine is 0.314 or 31.4 %