1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
8

Gold has 118 neutrons. If a gold atom were to lose a neutron, what would happen?

Physics
1 answer:
nexus9112 [7]3 years ago
6 0

Answer:

answer is B! if it adds one it becomes platinum and if it loses one it becomes mercury.

You might be interested in
What is the example of current electricity?
Nikitich [7]
Flow of electrons through a copper wire
8 0
3 years ago
One astronomer believes that the density of the universe remains constant. One physicist believes that the density of the univer
Llana [10]
I think the third option is the answer 
6 0
3 years ago
Read 2 more answers
An object of mass m = 4.0 kg, starting from rest, slides down an inclined plane of length l = 3.0 m. The plane is inclined by an
kirill [66]

Answer:

(a-1) d₂=4.89 m: The object slides 4.89 m along the rough surface

(a-2) Work (Wf) done by the friction force while the mass is sliding down the in- clined plane:

Wf=  -20.4 J    is negative

(b) Work (Wg) done by the gravitational force while the mass is sliding down the inclined plane:

Wg= 58.8 J is positive

Explanation:

Nomenclature

vf: final velocity

v₀ :initial velocity

a: acceleleration

d: distance

Ff: Friction force

W: weight

m:mass

g: acceleration due to gravity

Graphic attached

The attached graph describes the variables related to the kinetics of the object (forces and accelerations)

Calculation de of the components of W in the inclined plane

W=m*g

Wx₁ = m*g*sin30°

Wy₁=  m*g*cos30°

Object kinematics on the inclined plane

vf₁²=v₀₁²+2*a₁*d₁

v₀₁=0

vf₁²=2*a₁*d₁

v_{f1} = \sqrt{2*a_{1}*d_{1}  }  Equation (1)

Object kinetics on the inclined plane (μ= 0.2)

∑Fx₁=ma₁  :Newton's second law

-Ff₁+Wx₁ = ma₁   , Ff₁=μN₁

-μ₁N₁+Wx₁ = ma₁      Equation (2)

∑Fy₁=0   : Newton's first law

N₁-Wy₁= 0

N₁- m*g*cos30°=0

N₁  =  m*g*cos30°

We replace   N₁  =  m*g*cos30 and  Wx₁ = m*g*sin30° in the equation (2)

-μ₁m*g*cos30₁+m*g*sin30° = ma₁   :  We divide by m

-μ₁*g*cos30°+g*sin30° = a₁  

g*(-μ₁*cos30°+sin30°) = a₁  

a₁ =9.8(-0.2*cos30°+sin30°)=3.2 m/s²

We replace a₁ =3.2 m/s² and d₁= 3m in the equation (1)

v_{f1} = \sqrt{2*3.2*3}  }

v_{f1} =\sqrt{2*3.2*3}

v_{f1} = 4.38 m/s

Rough surface  kinematics

vf₂²=v₀₂²+2*a₂*d₂   v₀₂=vf₁=4.38 m/s

0   =4.38²+2*a₂*d₂  Equation (3)

Rough surface  kinetics (μ= 0.3)

∑Fx₂=ma₂  :Newton's second law

-Ff₂=ma₂

--μ₂*N₂ = ma₂   Equation (4)

∑Fy₂= 0  :Newton's first law

N₂-W=0

N₂=W=m*g

We replace N₂=m*g inthe equation (4)

--μ₂*m*g = ma₂   We divide by m

--μ₂*g = a₂

a₂ =-0.2*9.8= -1.96m/s²

We replace a₂ = -1.96m/s² in the equation (3)

0   =4.38²+2*-1.96*d₂

3.92*d₂ = 4.38²

d₂=4.38²/3.92

d₂=4.38²/3.92

(a-1) d₂=4.89 m: The object slides 4.89 m along the rough surface

(a-2) Work (Wf) done by the friction force while the mass is sliding down the in- clined plane:

Wf = - Ff₁*d₁

Ff₁= μ₁N₁= μ₁*m*g*cos30°= -0.2*4*9.8*cos30° = 6,79 N

Wf= -  6.79*3 = 20.4 N*m

Wf=  -20.4 J    is negative

(b) Work (Wg) done by the gravitational force while the mass is sliding down the inclined plane

Wg=W₁x*d= m*g*sin30*3=4*9.8*0.5*3= 58.8 N*m

Wg= 58.8 J is positive

6 0
4 years ago
An hydrogen molecule consists of two hydrogen atoms whose total mass is 3.3×10−27 kg and whose moment of inertia about an axis p
dlinn [17]

Answer:

6.9631\times 10^{-11}\ m

Explanation:

I = Moment of inertia = 4\times 10^{-48}\ kg m^2

m = Mass of two atoms = 2m = 3.3\times 10^{-27}\ kg

r  = distance between axis and rotation mass

Moment of inertia of the system is given by

I=mr^2\\\Rightarrow I=2mr^2\\\Rightarrow 4\times 10^{-48}=3.3\times 10^{-27}\times r^2\\\Rightarrow r=\sqrt{\frac{4\times 10^{-48}}{3.3\times 10^{-27}}}\\\Rightarrow r=3.48155\times 10^{-11}\ m

The distance between the atoms will be two times the distance between axis and rotation mass.

d=2r\\\Rightarrow d=2\times 3.48155\times 10^{-11}\\\Rightarrow d=6.9631\times 10^{-11}\ m

Therefore, the distance between the two atoms is 6.9631\times 10^{-11}\ m

3 0
4 years ago
6) Bill and Amy want to ride their bikes from their neighborhood to school which is 14.4
Studentka2010 [4]

Answer:

Amy's speed is 2/3 faster than Bill's

Explanation:

can't believe you don't know how to do this.

3 0
3 years ago
Other questions:
  • Kevin is a black high school senior. While walking home from a sporting event at school, he sees a police car and decides to tak
    14·1 answer
  • Why is it inaccurate to use mgy to calculate the potential energy of a satellite orbiting earth at a height one earth radius abo
    7·1 answer
  • Please Help Me with This
    15·1 answer
  • An air bubble has a volume of 1.70 cm³ when it is released by a submarine 115 m below the surface of a lake. What is the volume
    10·1 answer
  • 2. A car going 35 km/hr takes 23.0 s to come to a stop at the red light. What is it's
    5·1 answer
  • What happens to the speed of water waves as it enters a shallow medium .
    10·1 answer
  • What is wave motion​
    10·1 answer
  • How might viral diseases be prevented?
    7·1 answer
  • The force measuring instrument is called
    12·2 answers
  • calculate the kinetic energy of a 820 kg compact car moving at 23 m/s.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!