1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gladu [14]
3 years ago
9

An open pipe of length 0.58 m vibrates in the third harmonic with a frequency of 939Hz. What is the speed of sound through the a

ir in the pipe?
344 m/s

363 m/s

369 m/s

357 m/s

350 m/s
Physics
1 answer:
vaieri [72.5K]3 years ago
3 0

363 m/s is the speed of sound through the air in the pipe.

Answer: Option B

<u>Explanation:</u>

The formula used to calculate the wavelength given as below,

      Wavelength (\lambda)=\frac{\text { wave velocity }(v)}{\text { frequency }(f)}

      v=\lambda \times f   --------> eq. 1

In power system, harmonics define by positive integers of the fundamental frequency. So the third order harmonic is a multiple of the third fundamental frequency. Each harmonic creates an additional node and an opposite node, as well as an additional half wave within the string.

If the number of waves in the circuit is known, the comparison between standing wavelength and circuit length can be calculated algebraically. The general expression for this given as,

         L=\frac{n \lambda}{2}

For first harmonic, n =1

         L=\frac{\lambda}{2}

For second harmonic, n =2

         L=\frac{2 \lambda}{2}=\lambda

For third harmonic, n =3

         L=\frac{3 \lambda}{2}

         \lambda=\frac{2 L}{3}   -------> eq. 2

Here given f = 939 Hz, L = 0.58 m...And, substitute eq 2 in eq 1 and values, we get

   v=\frac{2 \times 0.58 \times 989}{3}=\frac{1089.24}{3}=363.08 \mathrm{m} / \mathrm{s}

You might be interested in
Which of the follow are types of changes that can happen in the rock cycle
ollegr [7]

you must have a rock first of all then the cycle continues


3 0
3 years ago
A mass m is attached to an ideal massless spring. When this system is set in motion with amplitude a, it has a period t. What is
Luden [163]

The period will be the same if the amplitude of the motion is increased to 2a

What is an Amplitude?

Amplitude refers to the maximum extent of a vibration or oscillation, measured from the position of equilibrium.

Here,

mass m is attached to the spring.

mass attached = m

time period = t

We know that,

The time period for the spring is calculated with the equation:

T = 2\pi \sqrt{\frac{m}{k} }

Where k is the spring constant

Now if the amplitude is doubled, it means that the distance from the equilibrium position to the displacement is doubled.

From the equation, we can say,

Time period of the spring is independent of the amplitude.

Hence,

Increasing the amplitude does not affect the period of the mass and spring system.

Learn more about time period here:

<u>brainly.com/question/13834772</u>

#SPJ4

7 0
2 years ago
A solenoid 25.0 cmcm long and with a cross-sectional area of 0.550 cm^2 contains 460 turns of wire and carries a current of 90.0
ankoles [38]

Answer:

a.  B = 0.20T

b.  u = 17230.6 J/m³

c.  E = 0.236J

d.  L = 5.84*10^-5 H

Explanation:

a. In order to calculate the magnetic field in the solenoid you use the following formula:

B=\frac{\mu_o n i}{L}               (1)

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

n: turns of the solenoid = 460

L: length of the solenoid = 25.0cm = 0.25m

i: current  = 90.0A

You replace the values of the parameters in the equation (1):

B=\frac{(4\pi*10^{-7}T/A)(460)(90.0A)}{0.25m}=0.20T

The magnetic field in the solenoid is 0.20T

b. The magnetic permeability of air is approximately equal to the magnetic permeability of vacuum. To calculate the energy density in the solenoid you use:

u=\frac{B^2}{2\mu_o}=\frac{(0.20T)^2}{2(4\pi*10^{-7}T/A)}=17230.6\frac{J}{m^3}

The energy density is 17230.6 J/m³

c. The total energy contained in the solenoid is:

E=uV           (2)

V is the volume of the solenoid and is calculated by assuming the solenoid as a perfect cylinder:

V=AL

A: cross-sectional area of the solenoid = 0.550 cm^2 = 5.5*10^-5m^2

V=(5.5*10^{-5}m^2)(0.25m)=1.375*10^{-5}m^3

Then, the energy contained in the solenoid is:

E=(17230.6J/m^3)(1.375*10^{-5}m^3)=0.236J

The energy contained is 0.236J

d. The inductance of the solenoid is calculated as follow:

L=\frac{\mu_o N^2 A}{L}=\frac{(4\pi*10^{-7}T/A)(460)^2(5.5*10^{-5}m^2)}{0.25m}\\\\L=5.84*10^{-5}H

The inductance of the solenoid is 5.84*10^-5 H

3 0
3 years ago
A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List the knowns in this problem.
astra-53 [7]

Answer:

a)

Y0 = 0 m

Vy0 = 15 m/s

ay = -9.81 m/s^2

b) 7.71 m

c) 3.06 s

Explanation:

The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards

Y(0) = 0 m

Vy(0) = 15 m/s

ay = -9.81 m/s^2 (negative because it points down)

Since acceleration is constant we can use the equation for uniformly accelerated movement:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

To find the highest point we do the first time derivative (this is the speed:

V(t) = Vy0 + a * t

We equate this to zero

0 = Vy0 + a * t

0 = 15 - 9.81 * t

15 = 9.81 * t

t = 0.654 s

At this time it will have a height of:

Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m

The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.

0 = Y0 + Vy0 * t + 1/2 * a * t^2

0 = 0 + 15 * t - 1/2 * 9.81 t^2

0 = 15 * t - 4.9 * t^2

0 = t * (15 - 4.9 * t)

t1 = 0 This is the moment it jumped into the air

0 = 15 - 4.9 * t2

15 = 4.9 * t2

t2 = 3.06 s This is the moment when it falls again.

3.06 - 0 = 3.06 s

5 0
2 years ago
Biker A is cruising at a speed of 10.0 m/s when she passes biker B who is at rest at the origin of the coordinate system. Biker
Burka [1]

Answer: attached

Explanation:

3 0
3 years ago
Other questions:
  • Tim sets up an experiment with 3 groups of runners. Group 1 smokes 1 pack per day. Group 2 smokes 2 packs per day. Group 3 smoke
    15·1 answer
  • Which of the following scenarios is possible for the resultant velocity of an airplane in a strong wind to be 150 m/s?
    9·1 answer
  • The earth pulls the moon towards it because of the earth has more mass and therefore moe
    10·1 answer
  • A boat with a horizontal tow rope pulls a water skier. She skis off to the side, so the rope makes an angle of 12.0 ∘ with the f
    5·1 answer
  • Use dimensional analysis to determine how the linear acceleration a in m/s2 of a particle traveling in a circle depends on some,
    11·1 answer
  • A dead organism is the same as a nonliving thing in science.
    8·1 answer
  • Which elements are alkali metals and which are alkaline earth metals
    9·1 answer
  • Gamma rays can cause cancer, but they can also be used to treat cancer. How
    10·1 answer
  • A girl, standing on a bridge, throws a stone vertically downward with an initial velocity of 12.0 m/s, into the river below. if
    7·1 answer
  • The y component of a vector R of magnitude k = Bcm shown in the figure below is Ky = +6 cm. What is the direction of this vector
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!