It will be 80 miles and it can be done only in 16 min
Answer:
North of west
Explanation:
Given
Plane wishes to fly in west
but wind with speed 33.9 km/h towards south obstructing its path
so plane must fly at an angle of \theta w.r.t west such that it final velocity is towards west
Plane absolute speed=195 km/h
To fly towards west velocity in Y direction should be zero
thus 

so Plane should head towards
North of west in order to fly in west.
So plane
actual velocity is

Answer:
the height reached is = 0.458 [m]
Explanation:
We need to make a sketch of the ball and see the location of the reference point where the potential energy is zero. But the kinetic energy will be defined by the following expression:
![Ek=\frac{1}{2} *m*v^{2} \\where:Ek= kinetic energy [J]\\m = mass of the ball [kg]\\v = velocity of the ball [m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3AEk%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cm%20%3D%20mass%20of%20the%20ball%20%5Bkg%5D%5C%5Cv%20%3D%20velocity%20of%20the%20ball%20%5Bm%2Fs%5D)
Replacing the values on the equation we have:
![Ek=\frac{1}{2}*(2)*(3^{2} )\\ Ek=9[J]\\](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%2A%282%29%2A%283%5E%7B2%7D%20%29%5C%5C%20Ek%3D9%5BJ%5D%5C%5C)
This kinetic energy will be transformed in potential energy in the moment when the ball starts to rolling up. Therefore the maximum height reached by the ball depends of the initial velocity given to the ball.
![Ek=Ep\\where\\Ep=potential energy [J]\\Ep=m*g*h\\where\\g=gravity = 9.81[m/s^2]\\h=height reached [m]\\](https://tex.z-dn.net/?f=Ek%3DEp%5C%5Cwhere%5C%5CEp%3Dpotential%20energy%20%5BJ%5D%5C%5CEp%3Dm%2Ag%2Ah%5C%5Cwhere%5C%5Cg%3Dgravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%3Dheight%20reached%20%5Bm%5D%5C%5C)
Now we have:
![h=\frac{Ep}{m*g} \\h=\frac{9}{2*9.81} \\\\h=0.45 [m]](https://tex.z-dn.net/?f=h%3D%5Cfrac%7BEp%7D%7Bm%2Ag%7D%20%5C%5Ch%3D%5Cfrac%7B9%7D%7B2%2A9.81%7D%20%5C%5C%5C%5Ch%3D0.45%20%5Bm%5D)
In that moment when the ball reach the 0.45 [m] the potencial energy will be maximum and equal to the kinetic energy when the ball has a velocity of 3[m/s]
instantaneous speed of the car