Answer:
When the starting and ending points are the same, the total work is zero.
Explanation:
option ( D )correct
A force is said to be conservative when the work done by the force in moving a particle from a point A to a point B is independent of the path followed between A and B and is the same for all the paths. The work done depends only on the particles initial and final positions. And when the initial and final position in conservative field are same the work done is said to be zero.
Answer:
Red has the longest wavelength among all the visible colors of light.
Explanation:
Visible light is the only electromagnetic radiations which can be seen by human eye. When white visible light passes through a prism it breaks down into 7 distinctive colors of rainbow.
These are red, orange, yellow, green blue, indigo and violet.
Red has the longest wavelength of around 700 nano meters with violet has the shortest wavelength of 380 nano meters.
The chemical behavior of atoms is best understood in terms of the degree to which an atom of a particular element attracts electrons, a characteristic officially known as electronegativity. When electronegativity is either very high (as in a chlorine atom) or very low (as in a sodium atom) then you have an atom which tends to either acquire or get rid of one or more electrons, and when it does so it becomes an ion. Carbon has a moderate electronegativity and therefore it is more likely to share electrons (forming covalent bonds) rather than either giving them up or acquiring them (forming ionic bonds). Nitrogen does have a relatively high electronegativity and does form ionic bonds, but in ionic compounds it is most often found in the nitrate radical, combined with 3 oxygen atoms. Nitrogen is also found in molecules that have covalent bonds, such as proteins, but it is the moderating influence of carbon that makes this happen.
I should add that inert elements such as helium do not attract electrons but neither do they give up the ones that they have; they are in a special category, and they form no bonds, neither ionic nor covalent.
Answer:
number of quantum states = 8
Explanation:
To find the total number of allowed states you take into account the following relations:

in this case you have:

furthermore, for each n,l,ml quantum state you have two additional states due to the spin of the electrons.
then, you have (n,l,ml) = (2,0,0), (2,1,-1), (2,1,0), (2,1,1) and with the spin:
number of quantum states = 2*(1+3) = 8