Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Answer:
0.0786
Explanation:
zero after the decimal place is not a significant figure since it comes before the real integer "7".
"5 " in ten thousandth place is rounded off to "6" because the next digit is also another "5",
so we get the three sfg 0.0786
Answer:
Part 1) Time of travel equals 61 seconds
Part 2) Maximum speed equals 39.66 m/s.
Explanation:
The final speed of the train when it completes half of it's journey is given by third equation of kinematics as

where
'v' is the final speed
'u' is initial speed
'a' is acceleration of the body
's' is the distance covered
Applying the given values we get

Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as

Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance
Thus total time of journey equals
Part b)
the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals 