Answer:
7/150
Explanation:
The following data were obtained from the question:
Object distance (u) = 75cm
Image distance (v) = 3.5cm
Magnification (M) =..?
Magnification is simply defined as:
Magnification (M) = Image distance (v)/ object distance (u)
M = v /u
With the above formula, we can obtain the magnification of the image as follow:
M = v/u
M = 3.5/75
M = 7/150
Therefore, the magnification of the image is 7/150.
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Answer:
f1/f2 =W1/W2 = 1/3
.0 f2 = 3f1
As ,
1/F= 1/f1 +1/f2
...1/40 = 1/f1 - 1/3f1
f1=> 80/3 cm
... f2 = 2f1 = 3 x 80/3 = 80 cm
Answer:
588 N
Explanation:
Since the 60 kg is moving at a constant velocity there is no acceleration. In order for the system to be balanced, both the normal force and the force of gravity must be equal. In this case the man has a mass of 60 kg. So to find the force you multiply mass by gravitys constant (9.81). And you end up with an answer of 588.6 but I rounded to 588.