1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
4 years ago
10

In a distant solar system, a giant planet has

Physics
1 answer:
sergeinik [125]4 years ago
8 0

Answer:

mass of the planet: 5.9\,10^{26}\,kg

Explanation:

When a moon keeps a circular orbit around a planet, it is the force of gravity the one that provides the centripetal force to keep it in its circular trajectory of radius R. So if we can write that in such cases (being the mass of the planet "M" and the mass of the moon "m"), we can form an equation by making the centripetal force on the moon equal the force of gravity (using the Newton's Universal Law of Gravity):

m\frac{v^2}{R}=G\frac{M\,m}{R^2}

where we used here the tangential velocity (v) of the moon around the planet. This equation can be further simplified by dividing both sides by "m" and multiplying both sides by the orbital radius R:

m\frac{v^2}{R}=G\frac{M\,m}{R^2}\\v^2=G\frac{M}{R}

Notice that the mass of the moon has actually disappeared from the equation, which tells us that the orbiting velocity and period do not depend on the mass of the moon, but on the mass of the actual planet.

We know the orbital radius R (5.32\,10^5\,km=5.32\,10^8\,m, the value of the Universal Gravitational constant G, and we can estimate the value of the tangential velocity of the moon since we know it period: 36.3 hrs = 388800 seconds.

We know that the moon makes a full circumference (2\,\pi\,R) in 388800 seconds, therefore its tangential velocity is:

v=\frac{2\,\pi\,5.32\,10^8}{388800} \frac{m}{s} \\v=8.6\,10^3\,\frac{m}{s}

where we rounded the velocity to one decimal.

Notice that we have converted all units to the SI system, so when using the formula to solve for the mass of the planet, the answer comes directly in kg.

Now we use this value for the tangential velocity to estimate the mass of the planet in the first equation we made and simplified:

v^2=G\frac{M}{R}\\M=\frac{v^2\,R}{G} \\M=\frac{(8.6\,10^3)^2\,5.32\,10^8}{6.67\,10^{-11}}kg\\M=5.9\,10^{26}\,kg

You might be interested in
Which of the following is numerically the same as the specific gravity? Mass Weight Density Volume
max2010maxim [7]
The answer is density

4 0
4 years ago
Read 2 more answers
A quarterback is set up to throw the football to a receiver who is running with a constant velocity v⃗ rv→rv_r_vec directly away
Artist 52 [7]

Answer:

a) V_o,y = 0.5*g*t_c

b) V_o,x = D/t_c - v_r

c) V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

d)  Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

Explanation:

Given:

- The velocity of quarterback before the throw = v_r

- The initial distance of receiver = r

- The final distance of receiver = D

- The time taken to catch the throw = t_c

- x(0) = y(0) = 0

Find:

a) Find V_o,y, the vertical component of the velocity of the ball when the quarterback releases it.  Express V_o,y in terms of t_c and g.

b) Find V_o,x, the initial horizontal component of velocity of the ball.   Express your answer for V_o,x in terms of D, t_c, and v_r.

c) Find the speed V_o with which the quarterback must throw the ball.  

   Answer in terms of D, t_c, v_r, and g.

d) Assuming that the quarterback throws the ball with speed V_o, find the angle Q above the horizontal at which he should throw it.

Solution:

- The vertical component of velocity V_o,y can be calculated using second kinematics equation of motion:

                               y = y(0) + V_o,y*t_c - 0.5*g*t_c^2

                              0 = 0 + V_o,y*t_c - 0.5*g*t_c^2

                               V_o,y = 0.5*g*t_c

- The horizontal component of velocity V_o,x witch which velocity is thrown can be calculated using second kinematics equation of motion:

- We know that V_i, x = V_o,x + v_r. Hence,

                               x = x(0) + V_i,x*t_c

                               D = 0 + V_i,x*t_c

                               V_o,x + v_r = D/t_c

                                V_o,x = D/t_c - v_r

- The speed with which the ball was thrown can be evaluated by finding the resultant of V_o,x and V_o,y components of velocity as follows:

                           V_o = sqrt ( V_o,x^2 + V_o,y^2)

                          V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

       

- The angle with which it should be thrown can be evaluated by trigonometric relation:

                            tan(Q) = ( V_o,y / V_o,x )

                            tan(Q) = ( (0.5*g*t_c)/ (D/t_c - v_r) )

                                   Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

                           

                               

6 0
3 years ago
Jane walked 5.00 meters on a road that inclines 13.0 degrees. How much distance did she cover horizontally?
Paladinen [302]
Any options available?
8 0
3 years ago
Can somebody help me with this I need to pass
son4ous [18]
<h2>Answer:Radiation-3,Conduction-1,Convection-2</h2>

Explanation:

Radiation is the transfer of heat through electromagnetic waves.

These waves do not require any medium.This is the way we get heat from sun.Radiation is the quickest mode to transfer of heat.

Conduction is the transfer of heat through collisions of atomic particles.

This phenomenon largely occurs in solids like metals.The neighbour atoms sets the atoms into random motion thereby raising the temperature.

Convection is the transfer of heat through actual movement of medium particle.

This phenomenon occurs in gases an liquids.The medium particles actually traverse through the space transferring the heat.

5 0
3 years ago
8. What is the frequency of the standing wave shown?
densk [106]

Answer:

while using brainly app. there is an option of uploading image of diagram, graph or plot. plz use that feature to upload image of the standing wave so that your question can be properly answeres

3 0
3 years ago
Other questions:
  • If a particle with a charge of +3.3 × 10?18 C is attracted to another particle by a force of 2.5 × 10?8 N, what is the magnitude
    7·1 answer
  • If an object is moving to the right and there is a net force acting on it to the left, what will happen to the object?
    9·1 answer
  • In a nuclear power plant, nuclear energy is first changed to ? energy
    15·1 answer
  • Which diagram is the best representation of gas molecules in a closed container? A. Diagram A B. Diagram B C. Diagram C D. Diagr
    6·1 answer
  • State any 3 properties of an ideal gas as assumed by the kinetic theory.​
    12·1 answer
  • What was the name of the voyages taken by Zheng he during the Ming dynasty on behalf of China
    13·1 answer
  • Best Answer gets Brainiest
    5·1 answer
  • The square plates of a 3000-pF parallel-plate capacitor measure 40 mm by 40 mm and are separated by a dielectric that is 0.29 mm
    8·1 answer
  • I KNOW YALL SEE THIS I NEED HELP GOD WILL GIVE U MANY BLESSING HELP A POOR SOUL OUT THE RECENT QUESTIONSSSSSSSSSSSSS. ://///
    5·2 answers
  • A plane accelerates to a velocity of 240 m/s in 11 s by which time it had traveled 1,400 m down the runway what were it average
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!