The red blood cells would look just fine or normal in the person who has drowned. Water wouldn't be lost because it wouldn't be attracted to the concentration of the salt water and the salt water would be too large to break the barriers.
Excitatory neurotransmitters cause the neuron to fire, and Inhibitory neurotransmitters cause the neuron not to fire.
Impulses are the signals passed from one neuron to another on the action of a stimulus. The impulses passed can be electrical or chemical. Neurotransmitters are the chemical molecules that help in the transfer of impulses between two neurons.
Chemicals like epinephrine, norepinephrine, and glutamate when released from the synaptic cleft of one neuron activate the receptors of other neurons, thereby initiating the other neuron to fire. These chemicals are called excitatory neurotransmitters.
Chemicals like GABA and glycine, when released from the synaptic cleft of one neuron do not activate the receptors of other neurons and hence the neurons will not fire the impulse. These chemicals are called inhibitory neurotransmitters.
To know more about neurotransmitters, visit
brainly.com/question/26387085
#SPJ4
A sample is termed REPRESENTATIVE SAMPLE if it has similar characteristics to the population being studied.
The representativeness of a sample is the extent to which its characteristics accurately reflects the characteristics of the population being studied.
Answer:
A. will not change from generation to generation.
Explanation:
For a population in the Hardy-Weinberg equilibrium, allele frequencies do not change from generation to generation and remain constant. This occurs when:
-The population is large enough.
-Individuals of the population exhibit random mating
.
-No evolutionary force (natural selection, mutation, gene flow, etc.) is operative on the population.
Under these conditions, the allele frequencies of the population are not changed and the population is said to be in "Hardy-Weinberg equilibrium".