Answer:
i font know ewan madaling sabihin yan
Explanation:
In total, the length is measured from the tip of the bow in a linear fashion to the stern of the formation of delight including any back-deck extensions. The measurement involves bow sprits; rudders; detachable engines and engine sections; handles; and various fittings and connections.
Importance in calculating a boat's length:
it affects the transportation costs (the longer the length, the higher the cost).
The pontoon's length counts as you find out how much rope you need to wrestle.
The cost of vessel settlement on marinas depends in part on the pontoon length. As more area is consumed by a more drawn pontoon, the docking charges are higher.
Transportation guidelines will probably not allow pontoons past a specific length on specific occasions of the day.
Answer:
A) F=-20.16×10⁹N
B) if the distance doubles, force is 4 times smaller.
Explanation:
q1=-28C
q2=5mC=0.005C
d=25cm=0.25m
Electrostatic force between charges: F=k×q1×q2/d², where k is a coefficient that has the value k=9 × 10⁹ N⋅m²⋅C^(-2) for air.
Thus:
F=9×10⁹×(-28)×0.005/0.25²
F=-20.16×10⁹N
The minus sign indicates attraction.
If distance doubles, d1=2×d, then we have 4d² at the denominator and the force is 4 times smaller.
Answer:
The car manufacturers could increase bore of the cylinders, place the engine in the center or back of the car, add 1 to 2 turbochargers, and lower the center of gravity of the vehicle to increase traction.
Explanation:
Turbochargers would be recommended because they significantly increase both the torque of the engine as well as the amount of horses powering the car while also increasing original efficiency both with and without the additional power. Weight adjustment allows for lightweight vehicles with good traction. This is important to both keep control of the car under acceleration, but it also makes the vehicle more efficient due to the now sheddable unnecessary weight. A more obvious approach would be to increase the base horsepower and torque of the engine by increasing the bore of the cylinders and the weight of the pistons. This acts as an inertial lever, because the extra piston weight will drag the crankshaft faster. This could also be achieved by taking away piston weight, but this could be catastrophic should a piston slip.