Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
The height attained by the ball is 11.86m
a ball is shot from the ground straight up into the air its initial and final velocity is
initial velocity, u = 50 ft/s = 50×0.305 = 15.25m/s
final velocity ,v = 0 m/s
gravity =-9.8 m/s²
( negative sign shows acceleration in opposite direction)
height =?
using the newton motion of equation
v² = u² + 2as
where
a= acceleration due to gravity(g)
s = height
v² = u² + 2gs
(0)² = (15.25)² + 2×(-9.8)×s
0 = (15.25)² - 19.6 × s
s= - (15.25)²/ 19.6
s = 11.86m
after ignoring the air resistance the maximum height of the ball is 11.86m
To learn more about motion under gravity -
brainly.com/question/27962354
#SPJ4
When rounding you look at the number right after the one you want to round. The tenth place is the one right after the decimal. If the number after it is more than five it goes up by one, it it's less than five it stays the same. So since the number after the 8 is a 3 it stays the same.
The answer is 7.8
c) only from warmer areas to colder areas.
The second principle of thermodynamics states that heat can only flow from a hotter body to a cooler one. Specifically, Clausius statement says that is not possible for heat to move by itself from a lower temperature body to a higher temperature body.