Answer:
A. 0.044 kg
Explanation:
We need to subtract the sum of (beaker+water - empty beaker) which is 0.106 kg - 0.062 kg = 0.044 kg. The answer will not be written in Newton because this unit is used for force only and in this question w have to find the weight.
Hope it is enough.
Please mark me as brainliest.
Adaptation will mean taking action to minimize the negative effects of change. ... the use of new tools and techniques for decision-making, For example, projected increases in drought, fire, windstorms, and insect and disease outbreaks are expected to result in greater tree mortality. Fewer trees will reduce Canada’s timber supply, which in turn will affect the economic competitiveness of Canada’s forest industry. This would leave forestry-dependent communities vulnerable to job losses, closure of forestry processing facilities and an overall economic slump.
REM, it is the deepest sleep and will send you deep within the mind
Answer:
its The rolling friction is greater than the force of the car’s weight against the hill.
and A force was required to start the car rolling.
Explanation:
The minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s. The correct option is D.
<h3>What is mechanical energy?</h3>
The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.
M.E = KE +PE
A boy is trying to roll a bowling ball up a hill. The friction is ignored. The ball must have to reach the top of the hill with a velocity. The acceleration due to gravity, g = 9.8 m/s²
The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.
M.E bottom of hill = M.E on top of hill
Kinetic energy + Potential energy = Kinetic energy + Potential energy
1/2 mu² + 0 = 0 + mgh
At the top of hill, the velocity will become zero. So, final kinetic energy is zero.
Substituting the values, we have
1/2 x u² = 9.8 x 22.5
u = sqrt [2 x9.8 x 22.5 ]
u= 21 m/s
Thus, the minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s.
Learn more about mechanical energy.
brainly.com/question/13552918
#SPJ1