Answer:
d = 2,042 10-3 m
Explanation:
The laser diffracts in the circular slit, so the process equation is
d sin θ= m λ
The first diffraction minimum occurs for m = 1
We can use trigonometry in the mirror
tan θ = Y / L
Where L is the distance from the Moon to Earth
Since the angle is extremely small
tan θ = sin θ / cos θ
Cos θ = 1
tant θ = sin θ = y / L
We replace
d y / L = λ
d = λ L / y
Let's calculate
d = 532 10⁻⁹ 3.84 10⁶/1 10³
d = 2,042 10-3 m
The magnitude of your displacement can be equal to the distance you covered, or it can be less than the distance you covered. But it can never be greater than the distance you covered.
This is because displacement is a straight line, whereas distance can be a straight line, a squiggly line, a zig-zag line, a line with loops in it, a line with a bunch of back-and-forths in it, or any other kind of line.
The straight line is always the shortest path between two points.
She can climb 0.92 m without losing weight.
<u>Explanation</u>:
Gravitational potential energy is the energy consisting of the product of mass, gravity and height.
1 cal = 4184 J
140 cal = 585760 J
Energy = 585760 J, m = 65.0 kg = 65000 g, Efficiency = 20 %
GPE = mgh
where m represents the mass
g represents the gravity,
h represents the height.
585760 = 65000
9.8
h
h = 0.92 m.
The equation for force is F=ma. Because we have the value of mass (0.42 kg) and the acceleration (14.8 m/s^2), simply plug them into the equation for force to get
![0.42 \times 14.8 = 6.22](https://tex.z-dn.net/?f=0.42%20%5Ctimes%2014.8%20%3D%206.22)
The answer is 6.22 N because newtons are the unit used to measure force.
The era after the KT event occurred