To solve the problem we will apply the concepts related to the Intensity as a function of the power and the area, as well as the electric field as a function of the current, the speed of light and the permeability in free space, as shown below.
The intensity of the wave at the receiver is




The amplitude of electric field at the receiver is


The amplitude of induced emf by this signal between the ends of the receiving antenna is


Here,
I = Current
= Permeability at free space
c = Light speed
d = Distance
Replacing,


Thus, the amplitude of induced emf by this signal between the ends of the receiving antenna is 0.0543V
Answer:
Stretch can be obtained using the Elastic potential energy formula.
The expression to find the stretch (x) is 
Explanation:
Given:
Elastic potential energy (EPE) of the spring mass system and the spring constant (k) are given.
To find: Elongation in the spring (x).
We can find the elongation or stretch of the spring using the formula for Elastic Potential Energy (EPE).
The formula to find EPE is given as:

Rewriting the above expression in terms of 'x', we get:

Example:
If EPE = 100 J and spring constant, k = 2 N/m.
Elongation or stretch is given as:

Therefore, the stretch in the spring is 10 m.
So, stretch in the spring can be calculated using the formula for Elastic Potential Energy.
To minimize neutron leakage from a reactor, the ratio of the surface area to the volume should be a minimum. For a given volume V the ratio of the sphere will be
.
We know that the surface area and volume of the sphere is given by:

Therefore, the ratio between the surface area and the volume for the sphere will be:

Equating the volume to the constant c, we will find the value of
.

Substituting the value of r in the ration between surface area and volume, we get:

Calculating the constants, we get:

Hence, the ration between surface area and volume is 
To learn more about surface area and volume of sphere, refer to:
brainly.com/question/4387241
#SPJ4
Answer:
Positive
Explanation:
The leaves will diverge further: The positive charge on the leaves has increased further. This occurs when positive charge is produced on the leaves by the charged object. This is quite possible only when the object is positively charged.