1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alik [6]
3 years ago
14

Hello guys sana ok lng kau​

Physics
2 answers:
mafiozo [28]3 years ago
7 0

Answer:

hello how are you

have a great day

erica [24]3 years ago
3 0

sssssssssssss

Explanation:

You might be interested in
Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
lyudmila [28]

Answer:

B.It is a satellite that collects data about rain and snow

C.Its orbit covers 90 percent of Earth’s surface

F.The sensors measure microwaves

5 0
3 years ago
A 150 kg uniform beam is attached to a vertical wall at one end and is supported by a cable at the other end. Calculate the magn
xenn [34]

Answer:

T = 2010 N

Explanation:

m = mass of the uniform beam = 150 kg

Force of gravity acting on the beam at its center is given as

W = mg

W = 150 x 9.8

W = 1470 N

T = Tension force in the wire

θ = angle made by the wire with the horizontal =  47° deg

L = length of the beam

From the figure,

AC = L

BC = L/2

From the figure, using equilibrium of torque about point C

T (AC) Sin47 = W (BC)

T L Sin47 = W (L/2)

T Sin47 = W/2

T Sin47 = 1470

T = 2010 N

6 0
3 years ago
What is true for ALL of the examples of electromagnetic waves? A) They all move at the same speed in a vacuum. B) They all have
gizmo_the_mogwai [7]

<em>A statement that is true for ALL of the examples of electromagnetic waves is that;</em>

A) They all move at the same speed in a vacuum

<u>The reason for qualifying 'in vacuum' is because EM waves of different frequencies often propagate at different speeds through material. Generally speaking, we say that light travels in waves, and all electromagnetic radiation travels at the same speed which is about 3.0 * 108 meters per second through a vacuum.</u>

5 0
3 years ago
Read 2 more answers
The next four questions refer to the situation below.
Anna11 [10]

Answer:

 t_{out} = \frac{v_s - v_r}{v_s+v_r} t_{in},      t_{out} = \frac{D}{v_s +v_r}

Explanation:

This in a relative velocity exercise in one dimension,

let's start with the swimmer going downstream

its speed is

         v_{sg 1} = v_{sr} + v_{rg}

The subscripts are s for the swimmer, r for the river and g for the Earth

with the velocity constant we can use the relations of uniform motion

           v_{sg1} = D / t_{out}

           D = v_{sg1}  t_{out}

now let's analyze when the swimmer turns around and returns to the starting point

        v_{sg 2} =  v_{sr}  - v_{rg}

         v_{sg 2} = D / t_{in}

         D = v_{sg 2}  t_{in}

with the distance is the same we can equalize

           v_{sg1} t_{out} = v_{sg2} t_{in}

          t_{out} =  t_{in}

           t_{out} = \frac{v_s - v_r}{v_s+v_r} t_{in}

This must be the answer since the return time is known. If you want to delete this time

            t_{in}= D / v_{sg2}

we substitute

            t_{out} = \frac{v_s - v_r}{v_s+v_r} ()

            t_{out} = \frac{D}{v_s +v_r}

7 0
2 years ago
car 2 has a mass of 150 kg and moves westward towards car 3 at a velocity of 2.2 m/s. car 3 has a mass of 265 kg and moves eastw
sergejj [24]

Answer:

The force of car 3 on car 2 ≈ 1810.82 N

Explanation:

The equation for the change in momentum of the two cars are;

Conservation of linear momentum

150( 2.2 - v) = 265(1.5-v)

150 × 2.2 - 265×1.5 = (150+265)v

150 × 2.2 - 265×1.5 = -67.5 = 415×v

∴ v = -67.5/415 = -0.1627 m/s West = 0.1627 m/s East

The impulse of the net force is the amount of momentum change experienced given by the equation;

Impulse force = m \times  v_f - m \times  v_0

Where;

v_f = The final velocity

v_0 = The initial velocity

For the the 265 kg mass, we have;

v_f = 0.1627 m/s

v_0 = 1.5 m/s

Which gives the impulse a s F×Δt =  265×0.1627 - 265×1.5 = -354.38 kg·m/s

The change in kinetic energy of the collision = 1/2×265×(0.1627^2 - 1.5^2) =-294.62 J

Whereby the distance moved in one second is 0.1627 m, we have;

Work done = Force × Distance = Force × 0.1627 = 294.62

Force = 294.62/0.1627 = 1810.82 N.

8 0
3 years ago
Other questions:
  • In which of these situations, is mechanical energy being conserved? (Neglect, air resistance, friction, and breaking) Check all
    14·1 answer
  • The resolving power of electron microscopes is much better than the resolving power of light microscopes because the wavelength
    11·1 answer
  • In American football how many points.... look at the pic
    10·2 answers
  • What is the radius of the event horizon for a black hole with a mass 7.5 times the mass of the sun? This distance is called the
    15·1 answer
  • The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656(red) and 486 (blue). Light from a h
    5·1 answer
  • A puck moves 2.35 m/s in a -22 degree direction. A hockey stick pushes it for 0.215 s, changing its velocity to 6.42 m/s in a 50
    11·1 answer
  • . Si mi mejor amigo vive a 100 metros de mi casa (una cuadra aproximadamente) y sabe qué cuando pongo una canción determinada es
    14·1 answer
  • A person pushes a box across the floor the energy from the person moving arm is transferred to the box in the box in the floor b
    12·1 answer
  • Pls help i have test
    13·2 answers
  • When a planet is at its slowest orbital speed, its radius vector sweeps an area, A, in 45 days. What area will the radius vector
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!