Answer:
Explanation:
R1 = + 11.7 cm
R2 = - 18.7 cm
n = 1.52
(a) Use lens maker formula



f = 13.84 cm
(b)
R1 = + 18.7 cm
R2 = - 11.7 cm
n = 1.52
(a) Use lens maker formula



f = 13.84 cm
Answer:
There are three types of material as per the condition of charge flow
1) Conductor
2) Insulator
3) Semiconductor
1) Conductors
As we know that conductors are those which offer very small resistance to the flow of charge
Resistivity of the conductors are very small
2) Insulators
These type of materials offer large resistance to the flow of charges and it will not pass the current through it
So resistivity of the insulators are large as compared to conductors
Answer:
By ‘inserting’ you means to putting a resistor in series. In this case, no, there is no resistance that would produce the same effect as a short circuit.
If you adding a resistor in parallel with the circuit, then if it had a low value It might be similar to a short circuit. I
Answer:
8.33×10⁻⁴ m/s²
Explanation:
There are 100 cm in 1 m, and 60 s in 1 min.
300 cm/min² × (1 m / 100 cm) × (1 min / 60 s)² = 8.33×10⁻⁴ m/s²
Answer:
66.375 x 10⁻⁶ C/m
Explanation:
Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as
;
∅ = Q / ε₀ -----------------(i)
Where;
∅ = 7.5 x 10⁵ Nm²/C
ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²
Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;
7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)
Solve for Q;
Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²
Q = 66.375 x 10⁻⁷ C
Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e
L = Q / l ----------------------(ii)
Where;
Q = 66.375 x 10⁻⁷ C
l = length of the rod = 10.0cm = 0.1m
Substitute these values into equation (ii) as follows;
L = 66.375 x 10⁻⁷C / 0.1m
L = 66.375 x 10⁻⁶ C/m
Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.