Answer:

Explanation:
Percent yield is a ratio of the actual yield to the theoretical yield. It is found using this formula:

The actual yield is 12 liters, because that was actually produced in the lab.
The theoretical yield is 20 liters, because that was the expected yield.



For this reaction, the percent yield is 60%.

WHAT IS AN IONIC BOND


kossel explained that inert gases r inert due to the electronic configuration which contains 8 electrons in their outermost shell
And other elements loss and gain electrons to form ions and to have electronic configuration same as Noble gas and to get stable
#SARDAR JI.
Answer: the pH of the solution is 4.52
Explanation:
Consider the weak acid as Ha, it is dissociated as expressed below
HA H⁺ + A⁻
the Henderson -Haselbach equation can be expressed as;
pH = pKa + log( [A⁻] / [HA])
the weak acid is dissociated into H⁺ and A⁻ ions in the solution.
now the conjugate base of the weak acid HA is
HA(aq) {weak acid} H⁺(aq) + A⁻(aq) {conjugate base}
so now we calculate the value of Kₐ as well as pH value by substituting the values of the concentrations into the equation;
pKₐ = -logKₐ
pKₐ = -log ( 7.4×10⁻⁵ )
pKₐ = 4.13
now thw pH is
pH = pKₐ + log( [A⁻] / [HA])
pH = 4.13 + log( [0.540] / [0.220])
pH = 4.13 + 0.3899
pH = 4.5199 = 4.52
Therefore the pH of the solution is 4.52
2NH₂ + O₂ → N₂ + 2H₂O
<u>Explanation:</u>
Balancing the equation means, the number of atoms on both sides of the equation must be the same.
In the case of the given equation, we have to find out whether it is balanced or not.
2NH₂ + O₂ → N₂ + 2H₂O
Atoms Number of atoms before balancing after balancing
LHS RHS LHS RHS
N 1 2 2 2
H 2 2 4 4
O 2 1 2 2
To balance the N atoms, we have to put 2 in front of NH₂, and then to balance the H, O atoms, we have to put 2 in front of H₂O, so that each atom in left hand as well as right hand side of the equation was balanced.
Answer:
Heat lost to the surroundings
Heat lost to the thermometer
Explanation:
All changes in heat, or energy, can be explained. Many of the reactions or changes we see in the world involve the conversion of energy. For example as we heat up a substance (eg. water), the amount of energy we put in should give us an exact temperature. However, this is a "perfect world" scenario, and does not occur in real life. Whenever heat is added to a substance like water, we always need to account for the energy that is going to be lost. For example, heat lost to evaporation or even the effect of measuring the temperature with a thermometer (the introduction of anything including a thermometer will affect the temperature).