Answer: The ions which are not spectator ions are
and
Explanation:
Spectator ions are defined as the ions which does not get involved in a chemical equation or they are ions which are found on both the sides of the chemical reaction present in ionic form.
The given chemical equation is:
The ions which are present on both the sides of the equation are
and
and are spectator ions.
Thus the net ionic equation is:

Hence, the correct answer is
and
The polarity of a bond between two elements can be best determined by difference in the values of electronegativity.
<h3>Determination of polarity of bond</h3>
The polarity of a covalent bond can be determined by determining the difference in electronegativity between the two bonded atoms. Electronegativity is defined as the tendency of an atom to attract electrons to itself.
So we can conclude that the polarity of a bond between two elements can be best determined by difference in the values of electronegativity.
Learn more about polarity here: brainly.com/question/8229259
Different isotopes of the same element emit light at slightly different wavelengths, the minimum number of slits is mathematically given as
N=1820slits
<h3>What minimum number of slits is required to resolve these two wavelengths in second-order?</h3>
Generally, the equation for the wave is mathematically given as

Where the chromatic resolving power (R) is defined by

R = nN,
Therefore


and


In conclusion, the minimum number of slits is required to resolve these two wavelengths in second-order

Therefore

N=1820slits
Read more about slits
brainly.com/question/24305019
#SPJ1
Answer:
[CaCl₂·2H₂O] = 1.43 m
Explanation:
Molality is mol of solute / kg of solvent.
Mass of solvent = 40 g
Let's convert g to kg → 40 g / 1000 = 0.04 kg
Let's determine the moles of solute (mass / molar mass)
8.43 g / 146.98 g/mol = 0.057 mol
Molality = 0.057 mol / 0.04 kg → 1.43
Answer:
a. 59 m/atm
Explanation:
- To solve this problem, we must mention Henry's law.
- <em>Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.</em>
- It can be expressed as: C = KP,
C is the concentration of the solution (C = 1.3 M).
P is the partial pressure of the gas above the solution (P = 0.022 atm).
K is the Henry's law constant (K = ??? M/atm),
∵ C = KP.
∴ K = C/P = (1.3 M)/(0.022 atm) = 59.0 M/atm.