1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bija089 [108]
3 years ago
6

How much force is required to accelerate a 50 kg mass at 2 m/s2?

Physics
1 answer:
skelet666 [1.2K]3 years ago
5 0
Newton's 2nd law of motion: 

                    Force = (mass) x (acceleration)

                              = (50 kg) x (2 m/s²)

                              =    100 newtons .                                   
You might be interested in
Which of the following should be useful to show the percentage of total growth in plants exposed to various pollutants?
marishachu [46]
I think it is D. Bar graph
5 0
3 years ago
Read 2 more answers
write an essay describing and predicting the effects of fitness-related stress management techniques on the body.
Tatiana [17]
This is something u are going to have to do
7 0
3 years ago
The first stage in the GAS model of stress is
Vladimir [108]
<span>The first stage in the Gas model of stress is alarm and mobilization. So the correct option in regards to the given question is option “d”. Hans Selye is the person that evolved this model and he has explained this model in complete details.  He has broken down his model into three stages. The first stage involves alarm and mobilization. The second stage includes resistance. The third and the final stage include the exhaustion stage. These are the stages that an organism goes through to restore back the balance when stress is exerted from outside. </span>


8 0
3 years ago
Which is an example of a primitive plant?
ludmilkaskok [199]

Answer:

Non-flowering plants like mosses, horsetails, ferns, clubmosses, ginkgos, and cycads

Explanation:

Mark me brainliest plz

4 0
3 years ago
Two people stand facing each other at roller skating rink then push off each other
9966 [12]

a) 0 kg m/s

b) 0 kg m/s

c) +3 m/s

d) 60 N

Explanation:

a)

The momentum of an object is a vector quantity given by:

p=mv

where

m is the mass of the object

v is the velocity of the object

In this problem, we have a system of two people, so the total momentum will be the sum of the individual momenta of the two people:

p=p_1 + p_2

Which can be rewritten as

p=m_1 u_1 + m_2 u_2

where m_1,m_2 are the masses of the two people and u_1,u_2 their initial velocities.

However, the two people are initially at rest, so

u_1 = 0\\u_2 = 0

Therefore the total momentum is

p=0+0=0

b)

The principle of conservation of momentum states that when there are no external forces acting on a system, the total momentum of the system is conserved, so we can write:

p_i = p_f

where

p_i is the total momentum of the system before

p_f is the total momentum of the system after

In this problem,

p_i = 0

As we calculated in part a: this is because the total momentum of the two people before they push off each other is zero.

Therefore, according to the law of conservation of momentum,

p_f = p_i = 0

So the total momentum is zero also after they push off each other.

c)

The total momentum of the girl and the boy after they push off each other can be written as:

p_f = m_1 v_1 + m_2 v_2 (1)

where:

m_1 = 30 kg is the mass of the girl

v_1 = -5 m/s is her velocity (she moves backward, so the negative sign)

m_2 = 50 kg is the mass of the boy

v_2 is the velocity of the boy

As calculated in part b), we also know that the total momentum of the girl and the boy is

p_f = 0 (2)

By combining eq(1) and eq(2) we get

0=m_1 v_1 + m_2 v_2

And solving for v2 we find the velocity of the boy:

v_2=-\frac{m_1 v_1}{m_2}=-\frac{(30)(-5)}{50}=+3 m/s

and the positive sign means he is moving forward.

d)

We can solve this part by applying the impulse theorem, which states that the change in momentum of an object is equal to the product between the force applied on it and the duration of the collision:

\Delta p = F\Delta t

where

\Delta p is the change in momentum

F is the force

\Delta t is the time during which the force is applied

In this problem:

\Delta t = 2.5 s

For the boy, the change in momentum is:

\Delta p = m_2 (v_2 - u_2)

And since

m_2 = 50 kg\\u_2 = 0 m/s\\v_2 = 3 m/s

We have

\Delta p = (50)(3-0)=150 kg m/s

So, the force exerted between the boy and the girl is:

F=\frac{\Delta p}{\Delta t}=\frac{150}{2.5}=60 N

8 0
3 years ago
Other questions:
  • In order for an object to sink, its density must ___________ 1g/ml.
    7·2 answers
  • The sun heats earth's atmosphere unevenly. this causes convection currents to move in large circles in the atmosphere. what is t
    7·2 answers
  • Problem 9.49: Air enters the turbine of a gas turbine at 1200 kPa, 1200 K, and expands to 100 kPa in two stages. Between the sta
    11·1 answer
  • Two light bulbs are wired in series and one bulb burns out (opens.) Technician A says that the other bulb will still work. Techn
    5·1 answer
  • A student has an 80 g sample of a radioactive material that has a half-life of 20 seconds. How much material will he have left a
    5·1 answer
  • A 2120 kg car traveling at 13.4 m/s collides with a 2810 kg car that is initally at rest at a stoplight. The cars stick together
    14·1 answer
  • A women weighs 857 N. What is her mass?
    13·2 answers
  • What is the dimensional formula of force and torque​
    14·2 answers
  • A characteristic of a nebula is that it-
    11·2 answers
  • Which substance may lower air temperatures after a volcanic eruption?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!