Answer:
B. 2 m/s
B. Acceleration = 4.05 m/s² and Tension = 297.5 N.
Explanation:
A force is applied on a mass m whose acceleration is 4 m/s
Force = mass × acceleration
a = F/m = 4 m/s
4 m/s = F/m
F = 4 m/s (m)
If Force of 2F is applied on a mass of 4m ; it acceleration is as follows:
2F/4 m = F/ 2m
4m/s (m) / 2m = 2 m/s
a = 2 m/s
2.
Given that
mass
= 30 kg
mass
= 50 kg
= 0.1
From the question; we can arrive at two cases;
That :
----- equation (1)
---- equation (2)
50 a = 50 g - T
30 a = T - 30 g sin 30 - 4 × 30 g cos 30
By summation
80 a =
g
80 a = 32. 4 × 10 m/s ² (using g as 10m/s²)
80 a = 324 m/s ²
a = 324/80
a = 4.05 m/s²
From equation , replace a with 4.05
50 × 4.05 = 50 × 10 - T
T = 500 -202.5
T =297.5 N
Answer:
b) the result we got can be termed approximation because we are neglecting the shear stress acting on the two ends of the cylinder. Here we have considered only the share stress acting on the curved surface area only.
Explanation:
check attachment for solution to A
Answer:
Magnitude and direction.
Explanation:
Velocity can be defined as the rate of change in displacement (distance) with time. Velocity is a vector quantity and as such it has both magnitude and direction.
Mathematically, velocity is given by the equation;

Gravity is considered to be a universal force of attraction which acts between all objects that has both mass, energy and occupy space. Therefore, it acts in such a way as to bring objects together.
Additionally, the gravity of earth makes it possible for all physical objects to possess weight.
Hence, in free fall, the magnitude and direction of velocity of the object changes.