Answer:
The Avogadro's number is 
Explanation:
From the question we are told that
The edge length is 
The density of the metal is 
The molar mass of Ba is 
Generally the volume of a unit cell is

substituting value
![V = [5.02 *10^{-10}]^3](https://tex.z-dn.net/?f=V%20%3D%20%20%5B5.02%20%2A10%5E%7B-10%7D%5D%5E3)
From the question we are told that 68% of the unit cell is occupied by Ba atoms and that the structure is a metal which implies that the crystalline structure will be (BCC),
The volume of barium atom is

substituting value


The Molar mass of barium is mathematically represented as

Where
is the Avogadro's number
So

substituting value


Explanation:
5 trial, had an average destiny of 7.40. g/cm
Answer:
0.1667
Explanation:
Hello,
Dalton's law defines:

A total pressure is:

So, for A (solving for
in the previous equation, we get:

Since
, we obtain:
}
Best regards.
Answer:
D
Explanation:
Gamma radiation penetrates the cell wall of prokaryotic organisms such as bacteria and can inhibit their metabolic functions as well as destroy their DNA.
Debunking the other answers:
A is incorrect as Gamma radiation is used in the treatment of cancer via radiotherapy.
B is incorrect as Gamma rays are too small and would just penetrate any smoke particles.
C is incorrect because Gamma rays are used to disinfect food products to prevent food borne illness. Irradiation is safe to use on food and does not make it radioactive.
Thus, D is correct.
independent variable is being controlled and the dependent variable is being tested and being easured in a scientific experiment