<span>Step 1: Ask a question or identify a problem. ...Step 2: Background research. ...Step 3: Form a hypothesis. ...Step 4: Experiment and observe. ...<span>Step 5: Draw a conclusion.</span></span>
Answer:
0.234 M
Explanation:
C- 12.009 x 7
H- 1.001 x 5
N- 14.006
O- 16 x 3
S- 32.059
___________+
183.133 g/mol
= 0.234 M Cancel out the grams mol/L equals molarity. Lowest significant figure is 3
Answer:
Explanation:
The given reaction equation is:
2A + 4B → C + 3D
We know the mass of compound A in the reaction above. We are to find the mass of compound D.
We simply work from the known mass to calculate the mass of the unkown compound D
Using the mole concept, we can find the unknown mass.
Procedures
- We first find the molar mass of the compound A from the atomic units of the constituent elements.
- We then use the molar mass of A to calculate its number of moles using the expression below:
Number of moles of A = 
- Using the known number of moles of A, we can work out the number of moles of D.
From the balanced equation of the reaction, it is shown that:
2 moles of compound A was used up to produced 3 moles of D
Then
x number of moles of A would give the number of moles of D
- Now that we know the number of moles of D, we can find its mass using the expression below:
Mass of D = number of moles of D x molar mass of D
It is A. This is because the rate of reaction is defined as the speed at which the reactants are converted into the products.
When sunlight hits the moon's surface, the temperature can reach 260 degrees Fahrenheit (127 degrees Celsius). When the sun goes down, temperatures can dip to minus 280 F (minus 173 C).