A geologist is studying rock layers in an old river bed, and he finds a fossil of a fish and a horsetail rush in the same rock layer. According to the law of faunal and floral succession, the geologist can assume that the rock containing the fossils may date back as far as the <span>Devonian period</span>.
Answer:
θ = 12.95º
Explanation:
For this exercise it is best to separate the process into two parts, one where they collide and another where the system moves altar the maximum height
Let's start by finding the speed of the bar plus clay ball system, using amount of momentum
The mass of the bar (M = 0.080 kg) and the mass of the clay ball (m = 0.015 kg) with speed (v₀ = 2.0 m / s)
Initial before the crash
p₀ = m v₀
Final after the crash before starting the movement
= (m + M) v
p₀ = ![p_{f}](https://tex.z-dn.net/?f=p_%7Bf%7D)
m v₀ = (m + M) v
v = v₀ m / (m + M)
v = 2.0 0.015 / (0.015 +0.080)
v = 0.316 m / s
With this speed the clay plus bar system comes out, let's use the concept of conservation of mechanical energy
Lower
Em₀ = K = ½ (m + M) v²
Higher
= U = (m + M) g y
Em₀ = ![E_{mf}](https://tex.z-dn.net/?f=E_%7Bmf%7D)
½ (m + M) v² = (m + M) g y
y = ½ v² / g
y = ½ 0.316² / 9.8
y = 0.00509 m
Let's look for the angle the height from the pivot point is
L = 0.40 / 2 = 0.20 cm
The distance that went up is
y = L - L cos θ
cos θ = (L-y) / L
θ = cos⁻¹ (L-y) / L
θ = cos⁻¹-1 ((0.20 - 0.00509) /0.20)
θ = 12.95º
They differ because they are transverse wave. That is their direction of travel is perpendicular to its vibrations.
The process of splitting one large nucleus into
smaller ones is nuclear fission.
The process of combining two small nuclei into
one larger one is nuclear fusion.
The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz