Answer:
Since steel contains iron (a magnetic metal), the magnets will attract the steel cans since aluminum is not magnetic. This is used to separate the steel cans from the aluminum cans so they can be recycled separately.
Electro waves in a vacuum air is deals with this and electricity when the air and the electricity it makes electro magnets.
Answer:
2,38kg
Explanation:
Mass in function of time can be found by the formula:
, where
is the initial mass, t is the time and k is a constant.
Given that a sample decay 1% per day, that means that after first day you have 99% of mass.
, but
, so we have
, then 
Now using k found we must to find
.

Answer:
a

b

c
Explanation:
From the question we are told that
The angle of incidence is 
The refractive index of water is 
Generally Snell's law is mathematically represented as

Here
is the refractive index of air with value 
is the angle of refraction
So
![\theta _2 = sin^{-1}[\frac{n_1 * sin(\theta _1)}{n_2} ]](https://tex.z-dn.net/?f=%5Ctheta%20_2%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_1%20%2A%20sin%28%5Ctheta%20_1%29%7D%7Bn_2%7D%20%5D)
=> ![\theta _2 = sin^{-1}[\frac{1.3 * sin(10)}{1} ]](https://tex.z-dn.net/?f=%5Ctheta%20_2%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7B1.3%20%2A%20sin%2810%29%7D%7B1%7D%20%5D)
=> 
Given that the angle should not be greater than
then the angle of incidence will be
![\theta _1 = sin^{-1}[\frac{n_2 * sin(\theta _2)}{n_1} ]](https://tex.z-dn.net/?f=%5Ctheta%20_1%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_2%20%2A%20sin%28%5Ctheta%20_2%29%7D%7Bn_1%7D%20%5D)
=> ![\theta _1 = sin^{-1}[\frac{1 * sin(45)}{1.3} ]](https://tex.z-dn.net/?f=%5Ctheta%20_1%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7B1%20%2A%20sin%2845%29%7D%7B1.3%7D%20%5D)
=> 
Generally for critical angle is mathematically represented as
![\theta_c = sin^{-1}[\frac{n_2}{n_1} ]](https://tex.z-dn.net/?f=%5Ctheta_c%20%20%3D%20%20sin%5E%7B-1%7D%5B%5Cfrac%7Bn_2%7D%7Bn_1%7D%20%5D)
=>
=>