Answer:
The Earth’s lithosphere, which includes the crust and upper mantle, is made up of a series of pieces, or tectonic plates, that move slowly over time.
A divergent boundary occurs when two tectonic plates move away from each other. Along these boundaries, earthquakes are common and magma (molten rock) rises from the Earth’s mantle to the surface, solidifying to create new oceanic crust. The Mid-Atlantic Ridge and Pacific Ring of Fire are two examples of divergent plate boundaries.
This is a homogenous mixture because you cannot differentiate between the members of the mixture. A technique might be heating them until one melts and evaporates due to different boiling temperatures, or mixing them together with fluids that would dissolve one, yet keep the other one whole.
Answer:The metal complex formed would have the following formula [Cr(NO₂)₆]³⁻. The complex has a net negative charge and hence it can only be isolated as a salt with a positive cation so the formed complex could be isolated as potassium salt. The formula for salt would be K₃[Cr(NO₂)₆].
Explanation:
The metal ion given to us is Cr³⁺ (Chromium) in +3 oxidation state.
The electronic configuration for the metal ion is [Ar]3d³ so there are vacant 3d metal orbitals which are available and hence 6 NO₂⁻ ligands can easily attack the metal center and form a metal complex.
The charge on the overall complex can be calculated using the oxidation states of metal and ligand which is provided.
The (chromium ) Cr³⁺ metal has +3 charge and 6 NO₂⁻ (nitro) ligands have -6 charge and since the ligands will be providing a total of 6 - (negative) charge and hence only 3- (negative ) charge can be neutralized so a net 3- negative charge would be present on the overall complex which is basically present at the metal center :
charge on the complex=+3-6=-3
Let X be the Oxidation state of Cr in complex =[Cr(NO₂)₆]³⁻
X-6=-3
X=-3+6
X=+3
so our calculated oxidation state of Cr is +3 which matches with the provided in question.
As we can see that the overall metal complex has a net negative charge and hence and only positively charged cations can form a salt with this metal complex and hence only potassium K⁺ ions can form salt with the metal complex.
since overall charge present on the metal complex is -3 so 3 K⁺ ion would be needed to neutralize it and hence the formula of the metal salt would be K₃[Cr(NO₂)₆].
<u>Answer:</u> The correct IUPAC name of the alkane is 4-ethyl-3-methylheptane
<u>Explanation:</u>
The IUPAC nomenclature of alkanes are given as follows:
- Select the longest possible carbon chain.
- For the number of carbon atom, we add prefix as 'meth' for 1, 'eth' for 2, 'prop' for 3, 'but' for 4, 'pent' for 5, 'hex' for 6, 'sept' for 7, 'oct' for 8, 'nona' for 9 and 'deca' for 10.
- A suffix '-ane' is added at the end of the name.
- If two of more similar alkyl groups are present, then the words 'di', 'tri' 'tetra' and so on are used to specify the number of times these alkyl groups appear in the chain.
We are given:
An alkane having chemical name as 3-methyl-4-n-propylhexane. This will not be the correct name of the alkane because the longest possible carbon chain has 7 Carbon atoms, not 6 carbon atoms
The image of the given alkane is shown in the image below.
Hence, the correct IUPAC name of the alkane is 4-ethyl-3-methylheptane
<span>n this order, Ď=1.8gmL, cm=0.5, and mole fraction = 0.9
First, let's start with wt%, which is the symbol for weight percent. 98wt% means that for every 100g of solution, 98g represent sulphuric acid, H2SO4.
We know that 1dm3=1L, so H2SO4's molarity is
C=nV=18.0moles1.0L=18M
In order to determine sulphuric acid solution's density, we need to find its mass; H2SO4's molar mass is 98.0gmol, so
18.0moles1Lâ‹…98.0g1mole=1764g1L
Since we've determined that we have 1764g of H2SO4 in 1L, we'll use the wt% to determine the mass of the solution
98.0wt%=98g.H2SO4100.0g.solution=1764gmasssolution→
masssolution=1764gâ‹…100.0g98g=1800g
Therefore, 1L of 98wt% H2SO4 solution will have a density of
Ď=mV=1800g1.0â‹…103mL=1.8gmL
H2SO4's molality, which is defined as the number of moles of solute divided by the mass in kg of the solvent; assuming the solvent is water, this will turn out to be
cm=nH2SO4masssolvent=18moles(1800â’1764)â‹…10â’3kg=0.5m
Since mole fraction is defined as the number of moles of one substance divided by the total number of moles in the solution, and knowing the water's molar mass is 18gmol, we could determine that
100g.solutionâ‹…98g100gâ‹…1mole98g=1 mole H2SO4
100g.solutionâ‹…(100â’98)g100gâ‹…1mole18g=0.11 moles H2O
So, H2SO4's mole fraction is
molefractionH2SO4=11+0.11=0.9</span>