Answer:
1.8 m/s
Explanation:
Draw a free body diagram of the block. There are four forces:
Normal force Fn up.
Weight force mg down.
Applied force F to the east.
Friction force Fn μ to the west.
Sum the forces in the y direction:
∑F = ma
Fn − mg = 0
Fn = mg
Sum the forces in the x direction:
F − Fn μ = ma
F − mg μ = ma
a = (F − mg μ) / m
a = (12 N − 6 kg × 9.8 m/s² × 0.15) / 6 kg
a = 0.53 m/s²
Given:
Δx = 3 m
v₀ = 0 m/s
a = 0.53 m/s²
Find: v
v² = v₀² + 2aΔx
v² = (0 m/s)² + 2 (0.53 m/s²) (3 m)
v = 1.8 m/s
Have you ever looked up the density of a substance ? You ought to try it. Go ahead. Pick a substance, then go online or open up an actual book and find its density. You will never see any particular volume mentioned along with the density . . . because it doesn't matter. The whole idea of density is that it describes the substance, no matter how much or how little you have of it. The density of a tiny drop of water under a microscope is the same as the density of a supertanker-ful of water.
According to this equation
F = G × m₁*m₂ ÷ r²
other than the mass, the distance also affects the gravitational force between two objects (same mass or not).
Therefore the correct answer is B. The distance between the objects
Future note* use formulas to help you figure these sort of questions out. (if they have a formula to begin with).
Answer: c) increases
Explanation:
Pressure increases with decreasing height