If a point has 40 J of energy and the electric potential is 8 V, the charge must be: A. 5 C
<u>Given the following the details;</u>
- Electric potential = 8 Volts
To find the quantity of charge;
Mathematically, the quantity of charge with respect to electric potential is given by the formula;

Substituting the values into the formula, we have;

<em>Quantity of charge = 5 Coulombs</em>
Therefore, the quantity of charge must be <em>5 Coulombs.</em>
Find more information: brainly.com/question/21808222
That would be
0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />
Answer:
3.7kg
Explanation:
The following data were obtained from the question:
Volume = 3.7L
Mass =?
Next, we shall convert 3.7L to m³.
This is illustrated below:
1000L = 1m³
Therefore, 3.7L = 3.7/1000 = 0.0037m³
Now, we can obtain the mass of the water as shown below:
Density of water = 1000kg/m³
Volume of water = 0.0037m³
Mass of water =..?
Density = Mass /volume
1000kg/m³ = Mass /0.0037m³
Cross multiply
Mass = 1000Kg/m³ × 0.0037m³
Mass = 3.7Kg
Therefore, the mass of the water is 3.7Kg.
Hi there!
Recall that:
Change in momentum = mass × change in velocity
Or:
Δp = mΔv = m(vf - vi)
Plug in the given values. We can assign east to be positive and west to be negative in this instance (Velocity is a vector with direction).
Thus:
Δp = (1)(-21 - 10) = -31 kgm/s OR 31 kgm/s WEST.
The correct answer is B.
Change in momentum is EQUIVALENT to the quantity of IMPULSE.
The correct answer is H.
<span>A. box b because it has more mass </span>