Answer : The normal boiling point of ethanol will be,
or 
Explanation :
The Clausius- Clapeyron equation is :

where,
= vapor pressure of ethanol at
= 98.5 mmHg
= vapor pressure of ethanol at normal boiling point = 1 atm = 760 mmHg
= temperature of ethanol = 
= normal boiling point of ethanol = ?
= heat of vaporization = 39.3 kJ/mole = 39300 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:


Hence, the normal boiling point of ethanol will be,
or 
hydrocarbon is ethene which is used to test for saturation and it undergoes addition reaction
The first one is D, the second one is A and the last is C and D
Answer:
The correct option is: Carbonate ion < Carbon dioxide < Carbon monoxide
Explanation:
Bond energy is defined as the average energy needed to break a chemical covalent bond and signifies the strength of chemical covalent bond.
The bond strength of a covalent bond depends upon the <u>bond length and the bond order.</u>
Carbon monoxide molecule (CO) has two covalent bond and one dative bond. Bond order 2.6
Carbon dioxide (CO₂) has two carbon-oxygen (C-O) double bonds of equal length. Bond order 2.0
Carbonate ion (CO₃²⁻) has three C-O partial double bonds. Bond order 1.5
Also, the bond length is <u>inversely proportional to the bond order and bond strength.</u>
Therefore, <u>order of C-O bond length:</u> Carbon monoxide<Carbon dioxide<Carbonate ion
<u>Order of C-O bond order</u>: Carbonate ion<Carbon dioxide<Carbon monoxide
<u>Order of C-O bond strength or energy</u><u>: Carbonate ion<Carbon dioxide<Carbon monoxide</u>