Answer:Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be. Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.
Explanation:
I would say the answer is liquids
Answer: The balance of the reaction shifts toward the endothermic reaction.
Explanation:
An ENDOTHERMIC REACTION requires input of HEAT ENERGY to drive it FORWARD from reactants, unto completion of products.
So, on increasing the temperature (available heat) the REVERSIBLE REACTION favors the shifts towards the endothermic reaction
The anion<span> is also </span>larger than<span> the </span>atom<span> because of </span>electron-electron repulsion<span>. As more </span>electrons are<span> added to the </span>outer shell<span>, and even to </span>higher<span> principle energy levels, the </span>repulsion<span> bewteen the negatively charged particles grows, pushing the </span>shells<span> farther from the nucleus.</span>
Answer:
The volume of the balloon will be 5.11L
Explanation:
An excersise to solve with the Ideal Gases Law
First of all, let's convert the pressure in mmHg to atm
1 atm = 760 mmHg
760 mmHg ___ 1 atm
755.4 mmHg ____ (755.4 / 760) = 0.993 atm
922.3 mmHg ____ ( 922.3 / 760) = 1.214 atm
T° in K = 273 + °C
28.5 °C +273 = 301.5K
26.35°C + 273= 299.35K
P . V = n . R .T
First situation: 0.993atm . 6.25L = n . 0.082 . 301.5K
(0.993atm . 6.25L) / 0.082 . 301.5 = n
0.251 moles = n
Second situation:
1.214 atm . V = 0.251 moles . 0.082 . 301.5K
V = (0.251 moles . 0.082 . 301.5K) / 1.214 atm
V = 5.11L