consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
Answer:
1.7 L
Explanation:
PV = nRT
If P, n, and R are constant:
V₁ / T₁ = V₂ / T₂
(2.0 L) / (293.15 K) = V / (255.15 K)
V = 1.7 L
Answer:
Choice number three
Explanation:
"Since it is composed of gas and plasma, the gasses and plasma rotate at different speeds depending on where they are located on the sun."