The answer for this question is negative externality
A 1.5 kg bird is gliding at a height of 12 m with a speed of 3.8m/s. The kinetic energy of the bird is 10.83 joules.
Explanation:
Kinetic energy can be defined as,The kinetic energy (KE) of an object is the energy that the object possesses due to its motion.
The Kinetic energy can be calculated by using formula,
Kinetic Energy: KE = 1/2 (mv 2)
Where, m = Mass, v = Velocity.
Here in this case the bird mass is 1.5kg and is gliding with velocity 3.8m/s
hence, KE= 1/2*(1.5)×(3.8)^2
=0.5×1.5×3.8×3.8
=10.83Joules
Answer:
V = 20 miles /sec
Explanation:
We have remaining distance = d = 96 miles
Lets call Pascal velocity V in miles per hour
Now if he increases his velocity by 50 % (equivalent to multiply by 1.5 ) he will need a time t₁ to arrive then as V = d/t
1.5* V = d/ t₁ ⇒ 1.5 * V = 96 /t₁
And in the case of reducing his velocity
(V / 4) = d/ (t₁ + 16 ) ⇒ V * (t₁ + 16 ) = 4*d ⇒ V*t₁ + 16*V = 384
So we a 2 equation system with two uknown variables
1.5*V = 96/t₁ (1)
V*t₁ + 16*V = 384 (2)
We solve from equation (1) t₁ = 64/V
And by substitution in equation (2)
V * (64/V) + 16* V = 384
64 + 16 *V = 384 ⇒ 16*V = 320 ⇒ V= 320/16
V = 20 miles /sec
The correct answer is A. Solid Rock
I’m not sure if its correct but I think it’s focal Ray point
For concave mirrors, some generalizations can be made to simplify ray construction. They are: An incident ray traveling parallel to the principal axis will reflect and pass through the focal point. An incident ray traveling through the focal point will reflect and travel parallel to the principal axis.