The answer is b because 95 confidence is interval for the mean lifespan
The figure is NOT unique.
Imagine the following quadrilaterals:
Rectangle
Square
We know that:
Both quadrilaterals have at least two right angles.
However, they are not unique because they depend on the lengths of their sides.
Answer:
The figure described is not unique.
Answer:
a. 0.1576<p<0.2310
b. The two restaurants likely have similar order rates which are inaccurate.
Step-by-step explanation:
a. We first calculate the proportion,
:

-We use the z-value alongside the proportion to calculate the margin of error:

The confidence interval at 90% is then calculated as:
![CI=\hat p\pm MOE\\\\=0.1943\pm 0.0367\\\\=[0.1576,0.2310]](https://tex.z-dn.net/?f=CI%3D%5Chat%20p%5Cpm%20MOE%5C%5C%5C%5C%3D0.1943%5Cpm%200.0367%5C%5C%5C%5C%3D%5B0.1576%2C0.2310%5D)
Hence, the confidence interval at 90% is [0.1576,0.2310]
b. From a above, the calculated confidence interval is 0.1576<p<0.2310
-We compare the calculated CI to the stated CI of 0.147<p<0.206
-The two confidence intervals overlap each other and have the same value for 0.1576<p<0.206
-Hence, we conclude that the two restaurants likely have similar order rates which are inaccurate.