What we're looking for here is the gas sample's molar mass given its mass, pressure, volume, and temperature. Recalling the gas law, we have

or

where R is <span>0.08206 L atm / mol K, P is the given pressure, T is the temperature, and V is the volume.
Before applying the values given, it is important to make sure that they are to be converted to have consistent units with that of R.
</span>
Thus, we have
P = 736/ 729 = 0.968 atm
T = 28 + 273.15 = 301.15 K
V = 250/1000 = 0.250 L
Now, applying these converted values into the gas law, we have


Given that the mass of the sample is 0.430 g, we have

Thus, the gas sample has a molar mass of 43.9 g/mol.
K will give up an electron more easily than Br.
In the context of chemistry, yes. Energy input is always equal to the energy output.
Answer:
Reducing molecules.
Explanation:
NAD (Nicotinamide adenine dinucleotide) is the important molecule used by the living organisms for the generation of ATP. NADH is used almost in every biochemical cycle like glycolysis, kreb cycle and elelctron transport chain.
The NADH molecule is used as the reducing molecule in the biosynthesis of the different reaction. The NADH molecule reduces its hydrogen ions and also carry electrons for the synthesis of molecules. The NADH molecule is also used in the shuttle system as well.
Thus, the answer is reducing molecules.
Answer for your question is;
2,6 = 8
The first shell is 2 electrons the other shell is 6 electrons