Answer:
The order of reactivity towards electrophilic susbtitution is shown below:
a. anisole > ethylbenzene>benzene>chlorobenzene>nitrobenzene
b. p-cresol>p-xylene>toluene>benzene
c.Phenol>propylbenzene>benzene>benzoic acid
d.p-chloromethylbenzene>p-methylnitrobenzene> 2-chloro-1-methyl-4-nitrobenzene> 1-methyl-2,4-dinitrobenzene
Explanation:
Electron donating groups favor the electrophilic substitution reactions at ortho and para positions of the benzene ring.
For example: -OH, -OCH3, -NH2, Alkyl groups favor electrophilic aromatic substitution in benzene.
The -I (negative inductive effect) groups, electron-withdrawing groups deactivate the benzene ring towards electrophilic aromatic substitution.
Examples: -NO2, -SO3H, halide groups, Carboxylic acid groups, carbonyl gropus.
Answer:
Following are the solution to this question:
Explanation:
Please find the complete question in the attachment.
Start of Laboratory
Dissolve 2-naphthol in the round bottom flask with ethanol.
Add pellets of sodium hydroxide and hot chips. Attach a condenser.
Heat for 20 minutes under reflux, until the put a burden dissolves.
After an additional hour, add 1-Bromobutane and reflux.
Pour the contents into a beaker with ice from a round bottom flask.
On a Bachner funnel, absorb the supernatant by vacuum filtration.
Utilizing cold water to rinse the material and dry that on the filter.
Ending of the Lab
It is going to be reaction of neutralization, and water and salt will be formed. If acid and base are strong, the reaction of the solution should become neutral.